Skip to main content

Advertisement

Log in

Converting cold into pain

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Cold temperature can evoke a wide spectrum of perceptual sensations that range from freshness to unpleasant cold or overt pain. In mammals, the detection of cold temperature is accomplished by the activation of different subsets of sensory terminals innervating the skin and mucosae. Direct recordings of corneal nerve endings, combined with studies of thermoreceptive neurons in culture, have allowed the characterization of ionic mechanisms involved in cold temperature sensing. In recent years, major progress has also taken place in the identification and operation of thermally gated ion channels, especially of the transient receptor potential (TRP) family. However, it is still uncertain how individual sensory endings can be activated with different thermal thresholds. In this review, we have considered the known properties of cold-sensitive receptors and their transduction mechanisms and related them to the sensations they evoke. We analyzed the evidence linking specific ion channels to the activation of particular sets of afferent fibers. In our view, cold thermotransduction is complex and involves the concerted operation of several ion channels. Excitatory effects of cationic channels (e.g., TRPs) balance their activity with several excitability brakes (e.g., potassium channels), leading to tunable levels of sensory thresholds and activity. Alteration in this fine balance may result in altered cold sensitivity, a frequent symptom in patients with peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arndt JO, Klement W (1991) Pain evoked by polymodal stimulation of hand veins in humans. J Physiol 440:467–478

    PubMed  CAS  Google Scholar 

  • Askwith CC, Benson CJ, Welsh MJ, Snyder PM (2001) DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA 98:6459–6463

    Article  PubMed  CAS  Google Scholar 

  • Babes A, Zorzon D, Reid G (2004) Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 20:2276–2282

    Article  PubMed  Google Scholar 

  • Bade H, Braun HA, Hensel H (1979) Parameters of the static burst discharge of lingual cold receptors in the cat. Pflügers Arch 382:1–5

    Article  PubMed  CAS  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  PubMed  CAS  Google Scholar 

  • Bandell M, Macpherson LJ, Patapoutian A (2007) From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr Opin Neurobiol 17:490–497

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  PubMed  CAS  Google Scholar 

  • Beise RD, Carstens E, Kohllöffel LU (1998) Psychophysical study of stinging pain evoked by brief freezing of superficial skin and ensuing short-lasting changes in sensations of cool and cold pain. Pain 74:275–286

    Article  PubMed  CAS  Google Scholar 

  • Belmonte C (1996) Signal transduction in nociceptors: general principles. In: Belmonte C, Cervero F (eds) Neurobiology of Nociceptors. Oxford University Press, New York, pp 243–257

    Google Scholar 

  • Belmonte C, Acosta MC, Gallar J (2004) Neural basis of sensation in intact and injured corneas. Exp Eye Res 78:513–525

    Article  PubMed  CAS  Google Scholar 

  • Benzing H, Hensel H, Wurster R (1969) Integrated static activity of lingual cold receptors. Pflügers Arch 311:50–54

    Article  PubMed  CAS  Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32:1025–1043

    PubMed  CAS  Google Scholar 

  • Blix (1882) Experimentelle Beiträge zür Lösung der Frage über die spezifische Energie der Hautnerven. Zeitschr. F. Biologie 21:145

    Google Scholar 

  • Bowsher D, Haggett C (2005) Paradoxical burning sensation produced by cold stimulation in patients with neuropathic pain. Pain 117:230

    Article  PubMed  Google Scholar 

  • Braun HA, Bade H, Hensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflugers Arch 386:1–9

    Article  PubMed  CAS  Google Scholar 

  • Braun HA, Schäfer K, Wissing H, Hensel H (1984) Periodic transduction processes in thermosensitive receptors. In: Hamann W, Iggo A (eds) Sensory receptor mechanisms. World Scientific Publishing Co., Singapore, pp 147–156

    Google Scholar 

  • Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea pig cornea. J Physiol 512:211–217

    Article  PubMed  CAS  Google Scholar 

  • Brock JA, Pianova S, Belmonte C (2001) Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea pig cornea. J Physiol 533:493–501

    Article  PubMed  CAS  Google Scholar 

  • Brock J, Acosta MC, Al Abed A, Pianova S, Belmonte C (2006) Barium ions inhibit the dynamic response of guinea pig corneal cold receptors to heating but not to cooling. J Physiol 575:573–581

    Article  PubMed  CAS  Google Scholar 

  • Cabanes C, Viana F, Belmonte C (2003) Differential thermosensitivity of sensory neurons in the guinea pig trigeminal ganglion. J Neurophysiol 90:2219–2231

    Article  PubMed  CAS  Google Scholar 

  • Cain DM, Khasabov SG, Simone DA (2001) Response properties of mechanoreceptors and nociceptoras in mouse glabrous skin: an in vivo study. J. Neurophysiol 85:1561–1574

    PubMed  CAS  Google Scholar 

  • Campero M, Serra J, Ochoa JL (1996) C-polymodal nociceptors activated by noxious low temperature in human skin. J Physiol 497:565–572

    PubMed  CAS  Google Scholar 

  • Carpenter DO (1981) Ionic and metabolic bases of neuronal thermosensitivity. Fed Proc 40:2808–2813

    PubMed  CAS  Google Scholar 

  • Carr RW, Pianova S, Brock JA (2002) The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea pig cornea. J Gen Physiol 120:395–405

    Article  PubMed  CAS  Google Scholar 

  • Carr RW, Pianova S, Fernandez J, Fallon JB, Belmonte C, Brock JA (2003) Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea pig cornea. J Gen Physiol 121:427–439

    Article  PubMed  Google Scholar 

  • Carr RW, Pianova S, McKemy DD, Brock JA (2009) Action potential initiation in the peripheral terminals of cold-sensitive neurones innervating the guinea pig cornea. J Physiol 587:1249–1264

    Article  PubMed  Google Scholar 

  • Chen CC, Rainville P, Bushnell MC (1996) Noxious and innocuous cold discrimination in humans: evidence for separate afferent channels. Pain 68:33–43

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  PubMed  CAS  Google Scholar 

  • Craig AD, Bushnell MC (1994) The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–255

    Article  PubMed  CAS  Google Scholar 

  • Croze S, Duclaux R, Kenshalo DR (1976) The thermal sensitivity of the polymodal nociceptors in the monkey. J Physiol 263:539–562

    PubMed  CAS  Google Scholar 

  • Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284:1570–1582

    Article  PubMed  CAS  Google Scholar 

  • Darian-Smith I, Johnson KO, Dykes R (1973) “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J Neurophysiol 36:325–346

    PubMed  CAS  Google Scholar 

  • Davis KD (1998) Cold-induced pain and prickle in the glabrous and hairy skin. Pain 75:47–57

    Article  PubMed  CAS  Google Scholar 

  • de la Peña E, Mälkiä A, Cabedo H, Belmonte C, Viana F (2005) The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 567:415–426

    Article  PubMed  CAS  Google Scholar 

  • Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  PubMed  CAS  Google Scholar 

  • Donaldson HH (1885) On the temperature sense. Mind, vol. 10, no. 39

  • Donovan-Rodríguez T, Luna C, Acosta MC, Gallar J, Viana F, Belmonte C (2006) Effects of injury on electrical activity of corneal cold sensory receptors. The Society for Neuroscience 36th annual meeting, Atlanta, USA

  • Fajardo O, Meseguer V, Belmonte C, Viana F (2008) TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci 28:7863–7875

    Article  PubMed  CAS  Google Scholar 

  • Foulkes T, Wood JN (2007) Mechanisms of cold pain. Channels 1:154–160

    PubMed  Google Scholar 

  • Gallar J, Acosta MC, Belmonte C (2003) Activation of scleral cold thermoreceptors by blood flow changes. Invest Ophthalmol Vis Sci 44:697–705

    Article  PubMed  Google Scholar 

  • García-Hirschfeld J, López-Briones LG, Belmonte C, Valdeolmillos M (1995) Intracellular free calcium responses to protons and capsaicin in cultured trigeminal neurons. Neuroscience 567:235–243

    Article  Google Scholar 

  • Georgopoulos AP (1976) Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J Neurophysiol 39:71–83

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP (1977) Stimulus–response relations in high-threshold mechanothermal fibers innervating primate glabrous skin. Brain Res 128:547–552

    Article  PubMed  CAS  Google Scholar 

  • Goldscheider A (1883) Physiologie der Hautsinnesnerven. Johann Ambrosius Barth, Leizig

    Google Scholar 

  • Green BG, Pope JV (2003) Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact. Exp Brain Res 148:290–299

    PubMed  Google Scholar 

  • Green BG, Schoen KL (2007) Thermal and nociceptive sensations from menthol and their suppression by dynamic contact. Behav Brain Res 176:284–291

    Article  PubMed  CAS  Google Scholar 

  • Grossmann L, Gorodetskaya N, Teliban A, Baron R, Jänig W (2008) Cutaneous afferent C-fibers regenerating along the distal nerve stump after crush lesion show two types of cold sensitivity. Eur J Pain. Oct 29. [Epub ahead of print]

  • Hensel H (1973) Neural processes in thermoregulation. Physiol Rev 53:948–1017

    Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Monogr Physiol Soc 38:1–321

    PubMed  CAS  Google Scholar 

  • Hensel H, Iggo A (1971) Analysis of cutaneous warm and cold fibres in primates. Pflügers Arch 329:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hensel H, Zotterman Y (1951) The response of the cold receptors to constant cooling. Acta Physiol Scand 22:96–105

    Article  PubMed  CAS  Google Scholar 

  • Hensel H, Iggo A, Witt I (1960) A quantitative study of sensitive cutaneous thermoreceptors with C afferent fibres. J Physiol 153:113–126

    PubMed  CAS  Google Scholar 

  • Hensel H, Andres KH, von Düring M (1974) Structure and function of cold receptors. Pflügers Arch 352:1–10

    Article  PubMed  CAS  Google Scholar 

  • Heppelmann B, Gallar J, Trost B, Schmidt RF, Belmonte C (2001) Three-dimensional reconstruction of scleral cold thermoreceptors of the cat eye. J Comp Neurol 441:148–154

    Article  PubMed  CAS  Google Scholar 

  • Huber MT, Krieg JC, Dewald M, Voigt K, Braun HA (2000) Stochastic encoding in sensory neurons: impulse patterns of mammalian cold receptors. Chaos Solitons Fractals 11:1895–1903

    Article  Google Scholar 

  • Iggo A (1969) Cutaneous thermoreceptors in primates and sub-primates. J Physiol 200:403–430

    PubMed  CAS  Google Scholar 

  • Iggo A, Ogawa H (1971) Primate cutaneous thermal nociceptors. J Physiol 216:77P–78P

    PubMed  CAS  Google Scholar 

  • Johnson KO, Darian-Smith I, LaMotte C (1973) Peripheral neural determinants of temperature discrimination in man: a correlative study of responses to cooling skin. J Neurophysiol 36:347–370

    PubMed  CAS  Google Scholar 

  • Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13:487–492

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  • Jorum E, Warncke T, Stubhaug A (2003) Cold allodynia and hyperalgesia in neuropathic pain: the effect of N-methyl-d-aspartate (NMDA) receptor antagonist ketamine: a double-blind, cross-over comparison with alfentanil and placebo. Pain 101:229–235

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564:103–116

    Article  PubMed  CAS  Google Scholar 

  • Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106:1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K (2006) Antisense knockdown of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 200:112–123

    PubMed  CAS  Google Scholar 

  • Kenshalo DR (1970) Psychophysical studies of temperature sensitivity. Contrib Sens Physiol 4:19–74

    PubMed  CAS  Google Scholar 

  • Kenshalo DR, Duclaux R (1977) Response characteristics of cutaneous cold receptors in the monkey. J Neurophysiol 40:319–332

    PubMed  CAS  Google Scholar 

  • Klement W, Arndt JO (1992) The role of nociceptors of cutaneous veins in the mediation of cold pain in man. J Physiol 449:73–83

    PubMed  CAS  Google Scholar 

  • Koltzenburg M, Stucky CL, Lewin GR (1997) Receptive properties of mouse sensory neurons innervating hairy skin. J Neurophysiol 78:1841–1850

    PubMed  CAS  Google Scholar 

  • Kress M, Reeh PW (1996) More sensory competence for nociceptive neurons in culture. Proc Natl Acad Sci USA 93:14995–14997

    Article  PubMed  CAS  Google Scholar 

  • Kress M, Koltzenburg M, Reeh P, Handwerker H (1992) Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. J Neurophysiol 68:581–595

    PubMed  CAS  Google Scholar 

  • Kwan KY, Corey DP (2009) Burning cold: involvement of TRPA1 in noxious cold sensation. J Gen Physiol 133:251–256

    Article  PubMed  CAS  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  PubMed  CAS  Google Scholar 

  • LaMotte RH, Thalhammer JG (1982) Response properties of high-threshold cutaneous cold receptors in the primate. Brain Res 244:279–287

    Article  PubMed  CAS  Google Scholar 

  • Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK (2004) Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 29:387–392

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4, 5-bisphosphate. J Neurosci 25:1674–1681

    Article  PubMed  CAS  Google Scholar 

  • Lynn B, Carpenter SE (1982) Primary afferent units from the hairy skin from the rat hind limb. Brain Res 238:29–43

    Article  PubMed  CAS  Google Scholar 

  • Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    Article  PubMed  CAS  Google Scholar 

  • Madrid R, Donovan-Rodriguez T, Meseguer V, Acosta MC, Belmonte C, Viana F (2006) Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 26:12512–12525

    Article  PubMed  CAS  Google Scholar 

  • Madrid R, de la Peña E, Donovan-Rodriguez T, Belmonte C, Viana F (2009) Variable threshold of cold-sensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J Neurosci 29:3120–3131

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19:2483–2491

    Article  PubMed  CAS  Google Scholar 

  • Mälkiä A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 581:155–174

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    PubMed  CAS  Google Scholar 

  • McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 104:13525–13530

    Article  PubMed  CAS  Google Scholar 

  • Morin C, Bushnell MC (1998) Temporal and qualitative properties of cold pain and heat pain: a psychophysical study. Pain 74:67–73

    Article  PubMed  CAS  Google Scholar 

  • Namer B, Kleggetveit IP, Handwerker H, Schmelz M, Jorum E (2008) Role of TRPM8 and TRPA1 for cold allodynia in patients with cold injury. Pain 139:63–72

    Article  PubMed  CAS  Google Scholar 

  • Noël J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S, Guy N, Borsotto M, Reeh P, Eschalier A, Lazdunski M (2009) The mechano-activated K(+) channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. Mar 12 [Epub ahead of print]

  • Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401

    Article  PubMed  CAS  Google Scholar 

  • Ochoa J, Torebjörk E (1989) Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. J Physiol 415:583–599

    PubMed  CAS  Google Scholar 

  • Okazawa M, Takao K, Hori A, Shiraki T, Matsumura K, Kobayashi S (2002) Ionic basis of cold receptors acting as thermostats. J Neurosci 22:3994–4001

    PubMed  CAS  Google Scholar 

  • Orio P, Donovan-Rodriguez T, Madrid R, de la Peña E, Parra A, Bayliss DA, Belmonte C, Viana F (2009) Characteristics and physiological role of Ih in mouse cold thermoreceptors. J. Physiol. Mar 9 [Epub ahead of print]

  • Pappagallo M, Oaklander AL, Quatrano-Piacentini AL, Clark MR, Raja SN (2000) Heterogenous patterns of sensory dysfunction in postherpetic neuralgia suggest multiple pathophysiologic mechanisms. Anesthesiology 92:691–698

    Article  PubMed  CAS  Google Scholar 

  • Park CK, Kim MS, Fang Z, Li HY, Jung SJ, Choi SY, Lee SJ, Park K, Kim JS, Oh SB (2006) Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain. J Biol Chem 281:17304–17311

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond:mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  • Perl ER (1996) Cutaneous polymodal receptors: characteristics and plasticity. Prog Brain Res 113:21–37

    Article  PubMed  CAS  Google Scholar 

  • Pierau FK, Torrey P, Carpenter D (1975) Effect of ouabain and potassium-free solution on mammalian thermosensitive afferents in vitro. Pflugers Arch 359:349–356

    Article  PubMed  CAS  Google Scholar 

  • Reid G (2005) ThermoTRP channels and cold sensing: what are they really up to? Pflügers Arch 451:250–263

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Flonta ML (2001a) Physiology: cold current in thermoreceptive neurons. Nature 413:480

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Flonta M (2001b) Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci Lett 297:171–174

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Babes A, Pluteanu F (2002) A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 545:595–614

    Article  PubMed  CAS  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  PubMed  CAS  Google Scholar 

  • Rohács T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4, 5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    Article  PubMed  CAS  Google Scholar 

  • Rossi HL, Vierck CJ Jr, Caudle RM, Neubert JK (2006) Characterization of cold sensitivity and thermal preference using an operant orofacial assay. Mol Pain 13(2):37

    Article  Google Scholar 

  • Roza C, Belmonte C, Viana F (2006) Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain 120:24–35

    Article  PubMed  Google Scholar 

  • Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S (2007) Cold sensitivity of recombinant TRPA1 channels. Brain Res 11:39–46

    Article  CAS  Google Scholar 

  • Schäfer K, Braun HA (1990) Modulation of periodic cold receptor activity by ouabain. Pflügers Arch 417:91–99

    Article  PubMed  Google Scholar 

  • Schäfer K, Braun HA, Isenberg C (1986) Effect of menthol on cold receptor activity: analysis of receptor processes. J Gen Physiol 88:757–776

    Article  PubMed  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  PubMed  CAS  Google Scholar 

  • Simone DA, Kajander KC (1997) Responses of cutaneous A-fiber nociceptors to noxious cold. J Neurophysiol 77:2049–2060

    PubMed  CAS  Google Scholar 

  • Spray DC (1974) Metabolic dependence of frog cold receptor sensitivity. Brain Res 72:354–359

    Article  PubMed  CAS  Google Scholar 

  • Stevens SS (1967) Intensity functions in sensory systems. Int J Neurol 6:202–209

    Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  • Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD (2007) J Neurosci 27:14147–14157

    Article  PubMed  CAS  Google Scholar 

  • Thut PD, Wrigley D, Gold MS (2003) Cold transduction in rat trigeminal ganglia neurons in vitro. Neuroscience 119:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Torebjörk HE, Hallin RG (1974) Identification of afferent C units in intact human skin nerves. Brain Res 67:387–403

    Article  PubMed  Google Scholar 

  • Viana F, de la Pena E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260

    Article  PubMed  CAS  Google Scholar 

  • Wasner G, Schattschneider J, Binder A, Baron R (2004) Topical menthol: a human model for cold pain by activation and sensitization of C nociceptors. Brain 127:1159–1171

    Article  PubMed  Google Scholar 

  • Wasner G, Naleschinski D, Binder A, Schattschneider J, McLachlan EM, Baron R (2008) The effect of menthol on cold allodynia in patients with neuropathic pain. Pain Med 9:354–358

    Article  PubMed  Google Scholar 

  • Xing H, Chen M, Ling J, Tan W, Gu JG (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27:13680–13690

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:856–859

    Article  CAS  Google Scholar 

  • Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP, Clapham DE, Reeh PW (2009) Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc 4:174–196

    Article  PubMed  CAS  Google Scholar 

  • Zotterman Y (1935) Action potentials in the glossopharyngeal nerve and in the chorda tympani. Skand Arch Physiol 72:73–75

    CAS  Google Scholar 

  • Zotterman Y (1936) Specific action potentials from the lingual nerve of the cat. Skand Arch Physiol 75:105–119

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the former and current members of their laboratories for their experimental contributions that support much of the views expressed in this review. We would also like to acknowledge the funding from the Spanish MICINN (projects BFU2007-61855, BFU2008-04425 and CONSOLIDER-INGENIO 2010 CSD2007-0002) and from the Fundación Marcelino Botín.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Belmonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmonte, C., Brock, J.A. & Viana, F. Converting cold into pain. Exp Brain Res 196, 13–30 (2009). https://doi.org/10.1007/s00221-009-1797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1797-2

Keywords

Navigation