Skip to main content
Log in

Haptic two-dimensional angle categorization and discrimination

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study examined the extent to which haptic perception of two-dimensional (2-D) shape is modified by the design of the perceptual task (single-interval categorization vs. two-interval discrimination), the orientation of the angles in space (oblique vs. horizontal), and the exploration strategy (one or two passes over the angle). Subjects (n = 12) explored 2-D angles using the index finger of the outstretched arm. In the categorization task, subjects scanned individual angles, categorizing each as “large” or “small” (2 angles presented in each block of trials; range 80° vs. 100° to 89° vs. 91°; implicit standard 90°). In the discrimination task, a pair of angles was scanned (standard 90°; comparison 91–103°) and subjects identified the larger angle. The threshold for 2-D angle categorization was significantly lower than for 2-D angle discrimination, 4° versus 7.2°. Performance in the categorization task did not vary with either the orientation of the angles (horizontal vs. oblique, 3.9° vs. 4°) or the number of passes over the angle (1 vs. 2 passes, 3.9° vs. 4°). We suggest that the lower threshold with angle categorization likely reflects the reduced cognitive demands of this task. We found no evidence for a haptic oblique effect (higher threshold with oblique angles), likely reflecting the presence of an explicit external frame of reference formed by the intersection of the two bars forming the 2-D angles. Although one-interval haptic categorization is a more sensitive method for assessing 2-D haptic angle perception, perceptual invariances for exploratory strategy and angle orientation were, nevertheless, task-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appelle S (1972) Perception and discrimination as a function of stimulus orientation, the “oblique effect” in man and animals. Psychol Bull 78:266–278

    Article  CAS  PubMed  Google Scholar 

  • Appelle S, Countryman M (1986) Eliminating the haptic oblique effect: influence of scanning incongruity and prior knowledge of the standards. Perception 15:325–329

    Article  CAS  PubMed  Google Scholar 

  • Appelle S, Gravetter F (1985) Effect of modality-specific experience on visual and haptic judgment of orientation. Perception 14:763–773

    Article  CAS  PubMed  Google Scholar 

  • Baud-Bovy G, Gentaz E (2006) The haptic reproduction of orientations in three-dimensional space. Exp Brain Res 172:283–300

    Article  PubMed  Google Scholar 

  • Blackwell JR, Newell KM (1996) The informational role of knowledge of results in motor learning. Acta Psychol 92:119–129

    Article  CAS  Google Scholar 

  • Craddock M, Lawson R (2010) The effects of temporal delay and orientation on haptic object recognition. Atten Percept Psychophys 72:1975–1980

    Article  PubMed  Google Scholar 

  • Gaißert N, Bülthoff HH, Wallraven C (2011) Similarity and categorization: from vision to touch. Acta Psychol 138:219–230

    Google Scholar 

  • Gentaz E, Hatwell Y (1995) The haptic “oblique effect” in children’s and adults’ perception of orientation. Perception 24:631–646

    Article  CAS  PubMed  Google Scholar 

  • Gentaz E, Hatwell Y (1996) Role of gravitational cues in the haptic perception of orientation. Percep Psychophys 58:1278–1292

    Article  CAS  Google Scholar 

  • Gentaz E, Luyat M, Clan C, Hatwell Y, Barraud PA, Raphel C (2001) The reproduction of vertical and oblique orientations in the visual, haptic, and somato-vestibular systems. Q J Exp Psycho A 54:513–526

    CAS  Google Scholar 

  • Gold JI, Ding L (2012) How mechanisms of perceptual decision-making affect the psychometric function. Progr Neurobiol. doi:10.1016/j.pneurobio.2012.05.008

  • Goodwin AW, Wheat HE (1992) Human tactile discrimination of curvature when contact area with the skin remains constant. Exp Brain Res 88:447–450

    Article  CAS  PubMed  Google Scholar 

  • Goodwin AW, John KT, Marceglia AH (1991) Tactile discrimination of curvature by humans using only cutaneous information from the fingerpads. Exp Brain Res 86:663–672

    Article  CAS  PubMed  Google Scholar 

  • Gosselin-Kessiby N, Messier J, Kalaska JF (2008) Evidence for automatic on-line adjustments of hand orientation during natural reaching movements to stationary targets. J Neurophysiol 99:1653–1671

    Article  CAS  PubMed  Google Scholar 

  • Henriques DYP, Soechting JF (2003) Bias and sensitivity in the haptic perception of geometry. Exp Brain Res 150:95–108

    PubMed  Google Scholar 

  • Henriques DYP, Flanders M, Soechting JF (2004) Haptic synthesis of shapes and sequences. J Neurophysiol 91:1808–1821

    Article  PubMed  Google Scholar 

  • Hermens F, Kappers AM, Gielen SC (2006) The structure of frontoparallel haptic space is task dependent. Percept Psychophys 68:62–75

    Article  PubMed  Google Scholar 

  • Kappers AML (1999) Large systematic deviations in the haptic perception of parallelity. Perception 28:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kappers AM (2002) Haptic perception of parallelity in the midsagittal plane. Acta Psychol 109:25–40

    Article  Google Scholar 

  • Kappers AML (2003) Large systematic deviations in a bimanual parallelity task: further analysis of contributing factors. Acta Psychol 114:131–145

    Article  Google Scholar 

  • Kappers AML, Koenderink JJ (1999) Haptic perception of spatial relations. Perception 28:781–795

    Article  CAS  PubMed  Google Scholar 

  • Lacey S, Peters A, Sathian K (2007) Cross-modal object recognition is viewpoint-independent. PLoS ONE 2(9):e890

    Article  PubMed Central  PubMed  Google Scholar 

  • Levy M, Bourgeon S, Chapman CE (2007) Haptic discrimination of two-dimensional angles: influence of exploratory strategy. Exp Brain Res 178:240–251

    Article  PubMed  Google Scholar 

  • Merfeld DM (2011) Signal detection and vestibular thresholds: 1. Basic theory and practical considerations. Exp Brain Res 210:389–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Newell FN, Ernst MO, Tjan BS, Bulthoff HH (2001) Viewpoint dependence in visual and haptic object recognition. Psychol Sci 12:37–42

    Article  CAS  PubMed  Google Scholar 

  • Plaisier MA, Tiest WM, Kappers AM (2009) Salient features in 3-D haptic shape perception. Atten Percept Psychophys 71:421–430

    Article  PubMed  Google Scholar 

  • Robles-de-la-Torre G, Hayward V (2001) Force can overcome object geometry in the perception of shape through active touch. Nature 412:445–448

    Article  CAS  PubMed  Google Scholar 

  • Roland PE (1976) Astereognosis. Tactile discrimination after localized hemispheric lesions in man. Arch Neurol 33:543–550

    Article  CAS  PubMed  Google Scholar 

  • Strasburger H (2001) Converting between measures of slope of the psychometric function. Percep Psychophys 63:1348–1355

    Article  CAS  Google Scholar 

  • Ullman S (1995) The visual analysis of shape and form. In: Gazzaniga MS, Bizzi E (eds) The cognitive neurosciences. MIT Press, Cambridge MA, pp 339–350

    Google Scholar 

  • Voisin J, Benoit G, Chapman CE (2002a) Haptic discrimination of object shape in humans: two-dimensional angle discrimination. Exp Brain Res 145:239–250

    Article  PubMed  Google Scholar 

  • Voisin J, Lamarre Y, Chapman CE (2002b) Haptic discrimination of object shape in humans: contribution of cutaneous and proprioceptive inputs. Exp Brain Res 145:251–260

    Article  PubMed  Google Scholar 

  • Voisin J, Michaud G, Chapman CE (2005) Haptic shape discrimination in humans: insight into the haptic frames of reference. Exp Brain Res 164:347–356

    Article  PubMed  Google Scholar 

  • Wong J, Wilson ET, Gribble PI (2011) Spatially selective enhancement of proprioceptive acuity following motor learning. J Neurophysiol 105:2112–2521

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following for providing excellent technical assistance: R. Albert, T. Arial, the late R. Bouchoux, M. Bourdeau, C. Gauthier, M-T. Parent, and C. Valiquette. We thank Dr. Trevor Drew for helpful comments on the manuscript. The research was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada (253438), and operating (MOP-14454) and Group grants from the Canadian Institutes of Health Research, and the Université de Montréal, as well as an infrastructure grant from the Fonds de recherche du Québec-santé (GRSNC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Elaine Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toderita, I., Bourgeon, S., Voisin, J.I.A. et al. Haptic two-dimensional angle categorization and discrimination. Exp Brain Res 232, 369–383 (2014). https://doi.org/10.1007/s00221-013-3745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3745-4

Keywords

Navigation