Skip to main content
Log in

N-point spherical functions and asymptotic boundary KZB equations

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let G be a split real connected Lie group with finite center. In the first part of the paper we define and study formal elementary spherical functions. They are formal power series analogues of elementary spherical functions on G in which the role of the quasi-simple admissible G-representations is replaced by Verma modules. For generic highest weight we express the formal elementary spherical functions in terms of Harish-Chandra series and integrate them to spherical functions on the regular part of G. We show that they produce eigenstates for spin versions of quantum hyperbolic Calogero–Moser systems. In the second part of the paper we define and study special subclasses of global and formal elementary spherical functions, which we call global and formal N-point spherical functions. Formal N-point spherical functions arise as limits of correlation functions for boundary Wess–Zumino–Witten conformal field theory on the cylinder when the position variables tend to infinity. We construct global N-point spherical functions in terms of compositions of equivariant differential intertwiners associated with principal series representations, and express them in terms of Eisenstein integrals. We show that the eigenstates of the quantum spin Calogero–Moser system associated to N-point spherical functions are also common eigenfunctions of a commuting family of first-order differential operators, which we call asymptotic boundary Knizhnik–Zamolodchikov–Bernard operators. These operators are explicitly given in terms of folded classical dynamical r-matrices and associated dynamical k-matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this paper we use “spin” in the sense how this term is used in physics as the description of internal degrees of freedom of one-dimensional quantum particles.

  2. In our follow-up paper [58], we consider the space \(C_{\sigma _\ell ,{\underline{\tau }},\sigma _r}^\infty (G^{\times (N+1)})\) of \(V_\ell \otimes {\mathbf {U}}\otimes V_r^*\)-valued functions \({\widetilde{f}}\) on \(G^{\times (N+1)}\) satisfying the transformation behaviour

    $$\begin{aligned} {\widetilde{f}}(k_\ell g_0h_1^{-1},h_1g_1h_2^{-1},\ldots ,h_Ng_Nk_r^{-1}) =(\sigma _\ell (k_\ell )\otimes \tau _1(h_1)\otimes \cdots \otimes \tau _N(h_N)\otimes \sigma _r^*(k_r)) {\widetilde{f}}(g_0,\ldots ,g_N) \end{aligned}$$

    for \((k_\ell ,h_1,\ldots ,h_N,k_r)\in K\times G^{\times N}\times K\). This space is preserved by the action of the commutative algebra of biinvariant differential operators on \(G^{\times (N+1)}\), and N-point \(\sigma ^{(N)}\)-spherical functions f produce simultaneous eigenfunctions \({\widetilde{f}}\in C^{\infty }_{\sigma ,{\underline{\tau }},\sigma _r}(G^{\times (N+1)})\) of the biinvariant differential operators on \(G^{\times (N+1)}\) via the formula

    $$\begin{aligned} {\widetilde{f}}(g_0,\ldots ,g_N):=\bigl (id _{V_\ell } \otimes \tau _1(g_0^{-1})\otimes \tau _2(g_1^{-1}g_0^{-1})\otimes \cdots \otimes \tau _N(g_{N-1}^{-1}\cdots g_1^{-1}g_0^{-1})\otimes id _{V_r^*}\bigr ) f(g_0\cdots g_N). \end{aligned}$$

    In this paper we do not use to full extent the \(G^{\times N}\)-action on \({\mathbf {U}}\). This will be done in the followup paper [58], where we will focus on superintegrability.

  3. For more background on Eisenstein integrals and their role in harmonic analysis see, e.g., [28,29,30, 63].

  4. From the perspective of footnote 2, the eigenvalue equations with respect to the asymptotic boundary KZB operators arise from the action of the biinvariant differential operator \(\Omega _i-\Omega _{i-1}\) on \({\widetilde{f}}\), where \(\Omega \) is the quadratic Casimir of G and \(\Omega _i\) is its interpretation as biinvariant differential operator acting on the ith-coordinate of \(G^{\times (N+1)}\).

  5. See (3.16) for details.

  6. Note here the remarkable fact, well known to specialists in harmonic analysis, that for generic \(z\in Z({\mathfrak {g}})\) and \(\lambda \in {\mathfrak {h}}^*\) the requirement that the formal \(End (V_\ell \otimes V_r^*)\)-valued power series \(f=\sum _{\mu \le \lambda }f_{\lambda -\mu }\xi _\mu \) is an eigenfunction of the radial component of z with eigenvalue \(\zeta _\lambda (z)\) will uniquely define the coefficients \(f_\gamma \in End (V_\ell \otimes V_r^*)\) in terms of \(f_0\in End (V_\ell \otimes V_r^*)\). This in particular holds true for \(z=\Omega \). The quadratic Casimir \(\Omega \) is a natural choice since its radial component is an explicit second-order differential operator that produces the Hamiltonian of the \(\sigma \)-spin quantum Calogero–Moser system, solvable by asymptotic Bethe ansatz, see Sect. 1.3.

  7. This factorisation can be used to derive the asymptotic KZB equations for Etingof’s and Schiffmann’s [15] generalised weighted trace functions in a manner similar to the one as described above for N-point spherical functions, see [62] (weighted traces are naturally associated to the symmetric space \(G\times G/diag (G)\), with \(diag (G)\) the group G diagonally embedded into \(G\times G\)).

References

  1. Balagović, M., Kolb, S.: Universal \(K\)-matrices for quantum symmetric pairs. J. Reine Angew. Math. 747, 299–353 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. van den Ban, E.P., Schlichtkrull, H.: Expansions for Eisenstein integrals on semisimple spaces. Ark. Math. 35, 59–86 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baseilhac, P., Belliard, S.: Generalized \(q\)-Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93, 213–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basu, D., Wolf, K.B.: The unitary representations of \(SL(2,{\mathbb{R}})\) in all subgroup reductions. J. Math. Phys. 23, 189–205 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casselman, W., Miličić, D.: Asymptotic behavior of matrix coefficients of admissible representations. Duke Math. J. 94, 869–930 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Cherednik, I.: A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras. Invent. Math. 106, 411–431 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Collingwood, D.H., Shelton, B.: A duality theorem for extensions of induced highest weight modules. Pac. J. Math. 146, 227–237 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delius, G.W., MacKay, N.J.: Quantum group symmetry in sine-Gordon and affine Today field theories on the half-line. Comm. Math. Phys. 233, 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Francesco, P., Kedem, R., Turmunkh, B.: A path model for Whittaker vectors. J. Phys. A 50, 255201 (2017)

  10. Dixmier, J.: Enveloping Algebras, Graduate Studies in Mathematics, vol. 11. American Mathematical Society (1996)

  11. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York-Toronto-London (1953)

    MATH  Google Scholar 

  12. Etingof, P., Latour, F.: The Dynamical Yang–Baxter Equation, Representation Theory, and Quantum Integrable Systems, Oxford Lecture Series in Mathematics and Its Applications, vol. 29. Oxford University Press, Oxford (2005)

  13. Etingof, P.I., Frenkel, I.B., Kirillov Jr, A.A.: Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Math. Surveys and Monographs, no. 58. American Mathematical Society (1998)

  14. Etingof, P.I., Kirillov, A.A., Jr.: On the affine analogue of Jack and Macdonald polynomials. Duke Math. J. 74, 585–614 (1994)

    MathSciNet  Google Scholar 

  15. Etingof, P., Schiffmann, O.: Twisted traces of intertwiners for Kac–Moody algebras and classical dynamical \(r\)-matrices corresponding to Belavin–Drinfeld triples. Math. Res. Lett. 6, 593–612 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Etingof, P., Varchenko, A.: Exchange dynamical quantum groups. Comm. Math. Phys. 205, 19–52 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Etingof, P., Varchenko, A.: Traces of intertwiners for quantum groups and difference equations, I. Duke Math. J. 104, 391–432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fehér, L., Pusztai, B.G.: Derivations of the trigonometric \(BC_n\) Sutherland model by quantum Hamiltonian reduction. Rev. Math. Phys. 22, 699–732 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fehér, L., Pusztai, B.G.: Spin Calogero models associated with Riemannian symmetric spaces of negative curvature. Nucl. Phys. B 751, 436–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fehér, L., Pusztai, B.G.: A class of Calogero type reductions of free motion on a simple Lie group. Lett. Math. Phys. 79, 263–277 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Felder, G.: Conformal Field Theory and Integrable Systems Associated to Elliptic Curves. In: Proceedings of the International Congress of Mathematicians, Vol. 1,2 (Zürich, 1994), pp. 1247–1255. Birkhauser, Basel (1995)

  22. Felder, G., Weiczerkowski, C.: Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations. Comm. Math. Phys. 176, 133–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frenkel, I.B., Reshetikhin, N.Y.: Quantum affine algebras and holonomic difference equations. Comm. Math. Phys. 146, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gangolli, R.: On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups. Ann. Math. 93, 150–165 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghoshal, S., Zamolodchikov, A.: Boundary \(S\) matrix and boundary state in two-dimensional integrable quantum field theory. Internat. J. Modern Phys. A 9(24), 4353 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grünbaum, F.A., Pacharoni, I., Tirao, J.: Matrix valued spherical functions associated to the complex projective plane. J. Funct. Anal. 188, 350–441 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harish-Chandra: Spherical functions on a semisimple Lie group I. Am. J. Math. 80, 241–310 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harish-Chandra: On the theory of the Eisenstein integral. In: Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), pp. 123–149. Lecture Notes in Mathematics, Vol. 266, Springer, Berlin (1972)

  29. Harish-Chandra: Harmonic analysis on real reductive groups. I. The theory of the constant term. J. Funct. Anal. 19, 104–204 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Harish-Chandra: Harmonic analysis on real reductive groups. III. The Maass–Selberg relations and the Plancherel formula. Ann. Math. (2) 104, 117–201 (1976)

  31. Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions. I. Compos. Math. 64, 329–352 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Heckman, G.J., van Pruijssen, M.: Matrix valued orthogonal polynomials for Gelfand pairs of rank one. Tohoku Math. J. (2) 68, 407–437 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Heckman, G.J., Schlichtkrull, H.: Harmonic analysis and special functions on symmetric spaces. In: Perspectives in Mathematics, Vol. 16 (1994)

  34. Helgason, S.: Eigenspaces of the Laplacian: integral representations and irreducibility. J. Funct. Anal. 17, 328–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Graduate Texts in Mathematics vol. 34. American Mathematical Society (1978)

  36. Helgason, S.: Groups and Geometric Analysis, Mathematical Surveys and Monographs, no. 83. American Mathematical Society (2000)

  37. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)

  38. Isachenkov, M., Liendo, P., Linke, Y., Schomerus, V.: Calogero–Sutherland approach to defect blocks. J. High Energy Physics, vol. 204 no. 10 (2018)

  39. Isachenkov, M., Schomerus, V.: Integrability of conformal blocks. Part I. Calogero–Sutherland scattering theory. J. High Energy Phys. 180180(7), 65 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Jimbo, M., Kedem, R., Konno, H., Miwa, T., Weston, R.: Difference equations in spin chains with a boundary. Nucl. Phys. B 448, 429–456 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jimbo, M., Miwa, T.: Algebraic analysis of solvable lattice models. CBMS Reginal Conference Series in Mathematics, vol. 85. American Mathematical Society, Providence, RI (1995)

  42. Knapp, A.W.: Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton University Press, Princeton (1986)

    Book  MATH  Google Scholar 

  43. Knapp, A.W.: Lie groups beyond an introduction. In: Progress in Mathematics, vol. 140. Birkhäuser (1996)

  44. Kolb, S.: Radial part calculations for \(\widehat{\mathfrak{sl}}_2\) and the Heun KZB heat equation. Int. Math. Res. Not. IMRN 23, 12941–12990 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Kolb, S.: Quantum symmetric Kac–Moody pairs. Adv. Math. 267, 395–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their \(q\)-analogues. Springer Monographs in Mathematics. Springer, Berlin (2010)

  47. Koelink, H.T., Van der Jeugt, J.: Bilinear generating functions for orthogonal polynomials. Constr. Approx. 15, 481–497 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Special Functions: Group Theoretical Aspects and Applications, pp. 1–85. Math. Appl, Reidel, Dordrecht (1984)

  49. Koornwinder, T.H.: Group theoretic interpretations of Askey’s scheme of hypergeometric orthogonal polynomials. In: Orthogonal Polynomials and Their Applications (Segovia, 1986), pp. 46–72. Lecture Notes in Mathematics, vol. 1329. Springer, Berlin (1988)

  50. Korányi, A., Reimann, H.M.: Equivariant first order differential operators on boundaries of symmetric spaces. Invent. Math. 139, 371–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Letzter, G.: Coideal subalgebras and quantum symmetric pairs. In: New directions in Hopf algebras (Cambridge), MSRI publications, vol. 43. Cambridge Univiversity Press, pp. 117–166 (2002)

  52. Oblomkov, A.: Heckman–Opdam Jacobi polynomials for \(BC_n\) root system and generalized spherical functions. Adv. Math. 186, 153–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Oblomkov, A., Stokman, J.V.: Vector valued spherical functions and Macdonald–Koornwinder polynomials. Compos. Math. 141, 1310–1350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Olshanetsky, M.A., Perelomov, A.M.: Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12, 123–128 (1978)

    Google Scholar 

  55. Opdam, E.M.: Root systems and hypergeometric functions IV. Compos. Math. 67, 191–209 (1988)

    MathSciNet  MATH  Google Scholar 

  56. Rahman, M.: A generalization of Gasper’s kernel for Hahn polynomials: application to Pollaczek polynomials. Can. J. Math. 30, 133–146 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  57. Reshetikhin, N.: Spin Calogero–Moser models on symmetric spaces. In: Integrability, Quantization, and Geometry. I. Proceedings Symposium on Pure Mathematics, vol. 103.1. American Mathematical Society, Providence, RI, pp. 377–402 (2021)

  58. Reshetikhin, N., Stokman, J.V.: Asymptotic boundary KZB operators and quantum Calogero–Moser spin chains. arXiv:2012.13497

  59. Schomerus, V., Sobko, E., Isachenkov, M.: Harmony of spinning conformal blocks. J. High Energy Phys. 03, 085 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sono, K.: Matrix coefficients with minimal \(K\)-types of the spherical and non-spherical principal series representations of \(SL(3,{\mathbb{R}})\). J. Math. Sci. Univ. Tokyo 19, 1–55 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Stokman, J.V.: Generalized Onsager algebras. Algebr. Represent. Theory 23, 1523–1541 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stokman, J.V.: Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations. Indag. Math. (N.S.) 32, 1372–1411 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  63. Warner, G.: Harmonic Analysis on Semi-Simple Lie Groups II. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Ivan Cherednik, Pavel Etingof, Giovanni Felder, Gert Heckman, Erik Koelink, Christian Korff, Tom Koornwinder, Eric Opdam, Maarten van Pruijssen, Taras Skrypnyk and Bart Vlaar for discussions and comments. We thank Sam van den Brink for carefully reading the first part of the paper and pointing out a number of typos. The work of J.S. and N.R. was supported by NWO 613.009.126. In addition the work of N.R. was partially supported by NSF DMS-1601947 and by RSF 21-11-00141. He also would like to thank ETH-ITS for the hospitality during the final stages of the work. The work on this paper was completed before N.R. retired from the University of California at Berkeley. He would like to thank the Department of Mathematics at UC Berkeley and all colleagues there for many happy and productive years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Reshetikhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokman, J.V., Reshetikhin, N. N-point spherical functions and asymptotic boundary KZB equations. Invent. math. 229, 1–86 (2022). https://doi.org/10.1007/s00222-022-01102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-022-01102-3

Navigation