Skip to main content

Advertisement

Log in

Strontium Is Incorporated in Different Levels into Bones and Teeth of Rats Treated with Strontium Ranelate

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the strontium incorporation into specific bones and teeth of rats treated with strontium ranelate. The relative strontium levels [Sr/(Ca + Sr) ratio] were obtained by synchrotron radiation micro X-ray fluorescence. The incisor teeth were further examined by energy dispersive X-ray spectroscopy (EDS) in a scanning electron microscope. The isolated mineral phase was investigated by EDS in a transmission electron microscope and X-ray diffraction. The strontium content was markedly increased in animals treated with strontium ranelate, with different incorporation levels found among specific bones, regions within the same bone and teeth. The highest strontium levels were observed in the iliac crest, mandible and calvaria, while the lowest were observed in the femoral diaphysis, lumbar vertebrae, rib and alveolar bone. The strontium content was higher in the femoral neck than in the diaphysis. The strontium levels also varied within the alveolar bone. High levels of strontium were found in the incisor tooth, with values similar to those in the iliac crest. Strontium was observed in both enamel and dentin. The strontium content of the molar tooth was negligible. Strontium was incorporated into the mineral substance, with up to one strontium replacing one out of 10 calcium ions within the apatite crystal lattice. The mineral from treated animals presented increased lattice parameters, which might be associated to their bone strontium contents. In conclusion, the incorporation of strontium occurred in different levels into distinct bones, regions within the same bone and teeth of rats treated with strontium ranelate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int 16(Suppl 1):S11–S15

    Article  PubMed  CAS  Google Scholar 

  2. Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15

    Article  PubMed  Google Scholar 

  3. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    Article  PubMed  CAS  Google Scholar 

  4. Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, Spector TD, Brixen K, Goemaere S, Cormier C, Balogh A, Delmas PD, Meunier PJ (2008) Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695

    Article  PubMed  CAS  Google Scholar 

  5. Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673

    Article  PubMed  CAS  Google Scholar 

  6. Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498

    Article  CAS  Google Scholar 

  7. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104

    Article  CAS  Google Scholar 

  8. Gedalia I (1975) Strontium uptake by the developing femur bone and deciduous dentition. J Dent Res 54(spec no. B):B125–B130

    PubMed  Google Scholar 

  9. Li Z, Lu WW, Deng L, Chiu PK, Fang D, Lam RW, Leong JC, Luk KD (2010) The morphology and lattice structure of bone crystal after strontium treatment in goats. J Bone Miner Metab 28:25–34

    Article  PubMed  Google Scholar 

  10. Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311

    Article  PubMed  CAS  Google Scholar 

  11. Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578

    Article  PubMed  CAS  Google Scholar 

  12. Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677

    Article  PubMed  CAS  Google Scholar 

  13. Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975

    PubMed  CAS  Google Scholar 

  14. Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900

    Article  PubMed  Google Scholar 

  15. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453

    Article  PubMed  CAS  Google Scholar 

  16. Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(Suppl 3):S19–S24

    PubMed  Google Scholar 

  17. Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, Rey C (2005) Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med 16:405–409

    Article  PubMed  CAS  Google Scholar 

  18. Cabrera WE, Schrooten I, De Broe ME, D’Haese PC (1999) Strontium and bone. J Bone Miner Res 14:661–668

    Article  PubMed  CAS  Google Scholar 

  19. Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615

    Article  PubMed  CAS  Google Scholar 

  20. Pemmer B, Hofstaetter JG, Meirer F, Smolek S, Wobrauschek P, Simon R, Fuchs RK, Allen MR, Condon KW, Reinwald S, Phipps RJ, Burr DB, Paschalis EP, Klaushofer K, Streli C, Roschger P (2011) Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride. J Synchrotron Radiat 18(pt 6):835–841

    Article  PubMed  CAS  Google Scholar 

  21. Pérez C, Radtke M, Sánchez HJ, Tolentino H, Neuenshwander R, Barg W, Rubio M, Bueno MIS, Raimundo IM, Rohwedder JJR (1999) Synchrotron radiation X-ray fluorescence at the LNLS beamline instrumentation and experiments. X-Ray Spectrom 28:320–326

    Article  Google Scholar 

  22. Lopes RT, Lima I, Pereira GR, Pérez CA (2011) Synchrotron radiation X-ray microfluorescence techniques and biological applications. Pramana J Phys 76:271–279

    Article  Google Scholar 

  23. Pérez CA, Sánchez HJ, Barrea RA, Grenón M, Abraham J (2004) Microscopic X-ray fluorescence analysis of human dental calculus using synchrotron radiation. J Anal At Spectrom 19:392–397

    Article  Google Scholar 

  24. Solé VA, Papillon E, Cotte M, Walter Ph, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62:63–68

    Article  Google Scholar 

  25. Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375

    Article  PubMed  CAS  Google Scholar 

  26. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105:12748–12753

    Article  PubMed  CAS  Google Scholar 

  27. Shih WJWM, Hon MH (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J Cryst Growth 275:e2339–e2344

    Article  CAS  Google Scholar 

  28. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  PubMed  CAS  Google Scholar 

  29. Fraser R, Harrison M, Ibbertson K (1960) The rate of calcium turnover in bone. Measurement by a tracer test using stable strontium. Q J Med 29:85–111

    PubMed  CAS  Google Scholar 

  30. Reeve J, Wootton R, Hesp B (1976) A new method for calculating the accretion rate of bone calcium and some observations on the suitability of strontium-85 as a tracer for bone calcium. Calcif Tissue Res (2):121–135

  31. Reeve J, Arlot M, Wootton R, Edouard C, Tellez M, Hesp R, Green JR, Meunier PJ (1988) Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate. J Clin Endocrinol Metab 66:1124–1131

    Article  PubMed  CAS  Google Scholar 

  32. Kirkeby OJ, Berg-Larsen T (1991) Regional blood flow and strontium-85 incorporation rate in the rat hindlimb skeleton. J Orthop Res 9:862–868

    Article  PubMed  CAS  Google Scholar 

  33. Schour I, Massler M (1942) The teeth. In: Griffith JQ, Farris EJ (eds) The rat in laboratory investigation. J. B. Lippincott, Philadelphia, pp 104–165

    Google Scholar 

  34. Addison WHF, Appleton JL (1915) The structure and growth of the incisor teeth of the albino rat. J Morphol 26:43–96

    Article  Google Scholar 

  35. Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC, Smith AM (2004) The effect of fluoride on the developing tooth. Caries Res 38:268–276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance and expertise of C. A. Pérez (LNLS) in the SRμXRF analyses, V. C. A. Moraes (CBPF) in the XRD analyses and M. M. Medeiros (UFRJ) in the sample preparation procedures. This study was supported by the Brazilian agencies CNPq, FAPERJ, CAPES and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Farina.

Additional information

Josianne P. Oliveira and William Querido contributed equally to this study.

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, J.P., Querido, W., Caldas, R.J. et al. Strontium Is Incorporated in Different Levels into Bones and Teeth of Rats Treated with Strontium Ranelate. Calcif Tissue Int 91, 186–195 (2012). https://doi.org/10.1007/s00223-012-9625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9625-2

Keywords

Navigation