Skip to main content
Log in

Age- and Sex-Related Patterns of First Fracture and Fracture Prevalence

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

There are few data documenting the pattern of prevalent fracture across the entire adult age range, so we aimed to address this gap by investigating the prevalence of fractures in an Australian cohort. All-cause (ever) fractures were identified for males and females enrolled in the Geelong Osteoporosis Study (Australia) using a combination of radiology-confirmed and self-reported data. First fractures were used to generate age-related frequencies of individuals who had ever sustained a fracture. Of 1,538 males and 1,731 females, 927 males and 856 females had sustained at least one fracture since birth. The proportion of all prevalent fractures in the 0–10 year age group was similar for both sexes (~10 %). In males, the proportion with prevalent fracture increased to 34.1 % for age 11–20 year. Smaller increases were observed into mid-life, reaching a plateau at ~50 % from mid to late life. The age-related prevalence of fracture for females showed a more gradual increase until mid-life. For adulthood prevalent fractures, approximately 20 % of males had sustained a first adulthood fracture in the 20–30 year age group, with a gradual increase up to the oldest age group (49.1 %), while females showed an exponential pattern of increase from the 20–30 year age group (6.8 %) to the oldest age group (60.4 %). In both sexes, those who had not sustained a fracture in childhood or early adulthood generally appeared to remain fracture-free until at least the sixth decade. When considering the prevalence of adulthood fractures across the age groups, males showed a gradual increase while females showed an exponential increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amin S, Kopperdhal D, Melton LR, Achenbach S, Therneau T, Riggs B, Keaveny T, Khosla S (2011) Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res 26:1593–1600

    Article  PubMed Central  PubMed  Google Scholar 

  2. Barrett-Connor E, Siris E, Wehren L, Miller P, Abbott T, Berger M, Santora A, Sherwood L (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20:185–194

    Article  PubMed  Google Scholar 

  3. Chen Y, Miller P, Barrett-Connor E, Weiss T, Sajjan S, Siris E (2007) An approach for identifying postmenopausal women age 50–64 years at increased short-term risk for osteoporotic fracture. Osteoporos Int 18:1287–1296

    Article  PubMed  Google Scholar 

  4. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, LaCroix AZ, Roux C, Sambrook PN, Siris ES (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    Article  PubMed  Google Scholar 

  5. Fiorano-Charlier C, Ostertag A, Aquino J, de Vernejoul M, Baudoin C (2002) Reduced bone mineral density in postmenopausal women self-reporting premenopausal wrist fractures. Bone 31:102–106

    Article  CAS  PubMed  Google Scholar 

  6. Friis-Holmberg T, Brixen K, Rubin KH, Grønbæk M, Bech M (2012) Phalangeal bone mineral density predicts incident fractures: a prospective cohort study on men and women—results from the Danish Health Examination Survey 2007–2008 (DANHES 2007–2008). Arch Osteoporos 7:291–299

    Article  PubMed  Google Scholar 

  7. Garnero P, Cloos P, Sornay-Rendu E, Qvist P, Delmas P (2002) Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res 17:826–833

    Article  CAS  PubMed  Google Scholar 

  8. Gehlbach S, Saag KG, Adachi JD, Hooven FH, Flahive J, Boonen S, Chapurlat RD, Compston JE, Cooper C, Dıez-Perez A, Greenspan SL, LaCroix AZ, Netelenbos JC, Pfeilschifter J, Rossini M, Roux C, Sambrook PN, Silverman S, Siris ES, Watts NB, Lindsay R (2012) Previous fractures at multiple sites increase the risk for subsequent fractures: the global longitudinal study of osteoporosis in women. J Bone Miner Res 27:645–653

    Article  PubMed  Google Scholar 

  9. Kanis J, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey E, Mellstrom D, Melton L, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  CAS  PubMed  Google Scholar 

  10. LaFleur J, McAdam-Marx C, Alder SS, Sheng X, Asche CV, Nebeker J, Brixner DI, Silverman SL (2011) Clinical risk factors for fracture among postmenopausal patients at risk for fracture: a historical cohort study using electronic medical record data. J Bone Miner Metab 29:193–200

    Article  PubMed  Google Scholar 

  11. Langsetmo L, Goltzman D, Kovacs CS, Adachi JD, Hanley DA, Kreiger N, Josse R, Papaioannou A, Olszynski WP, Jamal SA (2009) Repeat low-trauma fractures occur frequently among men and women who have osteopenic BMD. J Bone Miner Res 24:1515–1522

    Article  PubMed  Google Scholar 

  12. Miller P, Siris E, Barrett-Connor E, Faulkner K, Wehren L, Abbott T, Chen Y, Berger M, Santora A, Sherwood L (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the national osteoporosis risk assessment. J Bone Miner Res 17:2222–2230

    Article  PubMed  Google Scholar 

  13. Ojo F, Snih SA, Ray LA, Raji MA, Markides KS (2007) History of fractures as predictor of subsequent hip and nonhip fractures among older Mexican Americans. J Natl Med Assoc 99:412–418

    PubMed Central  PubMed  Google Scholar 

  14. Sambrook PN, Flahive J, Hooven FH, Boonen S, Chapurlat R, Lindsay R, Nguyen TV, Dı´ez-Perez A, Pfeilschifter J, Greenspan SL, Hosmer D, Netelenbos JC, Adachi JD, Watts NB, Cooper C, Roux C, Rossini M, Siris ES, Silverman S, Saag KG, Compston JE, LaCroix A, Gehlbach S (2011) Predicting fractures in an international cohort using risk factor algorithms without BMD. J Bone Miner Res 26:2770–2777

    Article  PubMed  Google Scholar 

  15. Sen SS, Rives VP, Messina OD, Morales-Torres J, Riera G, Angulo-Solimano JM, Neto JFM, Alberto Frisoli J, Saenz RC, Geling O, Ross PD (2005) A risk assessment tool (osteorisk) for identifying Latin American women with osteoporosis. J Gen Intern Med 20:245–250

    Article  PubMed Central  PubMed  Google Scholar 

  16. Siris E, Miller P, Barrett-Connor E, Faulkner K, Wehren L, Abbott T, Berger M, Santora A, Sherwood L (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the national osteoporosis risk assessment. JAMA 286:2815–2822

    Article  CAS  PubMed  Google Scholar 

  17. Taylor B, Schreiner P, Stone K, Fink H, Cummings S, Nevitt M, Bowman P, Ensrud K (2004) Long-term prediction of incident hip fracture risk in elderly white women: study of osteoporotic fractures. J Am Geriatr Soc 52:1479–1486

    Article  PubMed  Google Scholar 

  18. Honkanen R, Tuppurainen M, Kroger H, Alhava E, Puntila E (1997) Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures. Calcif Tissue Int 60:327–331

    Article  CAS  PubMed  Google Scholar 

  19. Hosmer WD, Genant HK, Browner WS (2002) Fractures before menopause: a red flag for physicians. Osteoporos Int 132:337–341

    Article  Google Scholar 

  20. Wu F, Mason B, Horne A, Ames R, Clearwater J, Liu M, Evans M, Gamble G, Reid I (2002) Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures. Arch Intern Med 162:33–36

    Article  PubMed  Google Scholar 

  21. Ferrari S, Chevalley T, Bonjour J, Rizzoli R (2006) Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility. J Bone Miner Res 21:501–507

    Article  PubMed  Google Scholar 

  22. Farr J, Tomás R, Chen Z, Lisse J, Lohman T, Going S (2011) Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls. J Bone Miner Res 26:380–387

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol 41:1565–1575

    Article  PubMed  Google Scholar 

  24. Pasco JA, Nicholson GC, Henry MJ, Kotowicz MA, Gaudry TM (1999) Identification of incident fractures: the Geelong Osteoporosis Study. Aust N Z J Med 29:203–206

    Article  CAS  PubMed  Google Scholar 

  25. Center J, Nguyen T, Schneider D, Sambrook P, Eisman J (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  CAS  PubMed  Google Scholar 

  26. Ebeling PR (2008) Osteoporosis in men. N Engl J Med 358:1474–1482

    Article  CAS  PubMed  Google Scholar 

  27. Elverland H, Voss R (1997) Facial fractures. A life style disease among young men? Tidsskr Nor Laegeforen 117:3354–3358

    CAS  PubMed  Google Scholar 

  28. Packer G, Shaheen M (1993) Patterns of hand fractures and dislocations in a district general hospital. J Hand Surg. 18:511–514

    Article  CAS  Google Scholar 

  29. Henry MJ, Pasco JA, Nicholson GC, Kotowicz MA (2000) Prevalence of osteoporosis in Australian men and women: Geelong Osteoporosis Study. J Clin Densitom 3:261–268

    Article  CAS  PubMed  Google Scholar 

  30. Rudäng R, Darelid A, Nilsson M, Mellström D, Ohlsson C, Lorentzon M (2013) X-ray verified fractures are associated with finite element analysis derived bone strength and trabecular microstructure in young adult men. J Bone Miner Res 28:2305–2316

    Article  PubMed  Google Scholar 

  31. Ma D, Jones G (2002) Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health 38:497–500

    Article  CAS  PubMed  Google Scholar 

  32. Konstantynowicz J, Bialokoz-Kalinowska I, Motkowski R, Abramowicz P, Piotrowska-Jastrzebska J, Sienkiewicz J, Seeman E (2005) The characteristics of fractures in polish adolescents aged 16–20 years. Osteoporos Int 16:1397–1403

    Article  PubMed  Google Scholar 

  33. Jones G, Boon P (2008) Which bone mass measures discriminate adolescents who have fractured from those who have not? Osteoporos Int 19:251–255

    Article  CAS  PubMed  Google Scholar 

  34. Goulding A, Jones I, Williams S, Grant A, Taylor R, Manning P, Langley J (2005) First fracture is associated with increased risk of new fractures during growth. J Pediatr 146:286–288

    Article  PubMed  Google Scholar 

  35. Darelid A, Ohlsson C, Rudäng R, Kindblom J, Mellström D, Lorentzon M (2010) Trabecular volumetric bone mineral density is associated with previous fracture during childhood and adolescence in males: the GOOD study. J Bone Miner Res 25:537–544

    Article  PubMed  Google Scholar 

  36. Markanday S, Brennan SL, Gould H, Pasco JA (2013) Sex-differences in reasons for non-participation at recruitment: Geelong Osteoporosis Study. BMC Res Notes 6(1):104. doi:10.1186/1756-0500-1186-1104

    Article  PubMed Central  PubMed  Google Scholar 

  37. Chen Z, Kooperberg C, Pettinger M, Bassford T, Cauley J, LaCroix A, Lewis C, Kipersztok S, Borne C, Jackson R (2004) Validity of self-report for fractures among a multiethnic cohort of postmenopausal women: results from the Women’s Health Initiative observational study and clinical trials. Menopause 11:264–274

    Article  PubMed  Google Scholar 

  38. Nevitt MC, Cummings SR, Browner WS, Seeley DG, Cauley JA, Vogt TM, Black DM (1992) The accuracy of self-report of fractures in elderly women: evidence from a prospective study. Am J Epidemiol 135:490–499

    CAS  PubMed  Google Scholar 

  39. Holloway KL, Brennan SL, Kotowicz MA, Bucki-Smith G, Timney EN, Dobbins AG, Williams LJ, Pasco JA (2014) Prior fracture as a risk factor for future fracture in an Australian cohort. Osteoporos Int. doi:10.1007/s00198-014-2897-9

Download references

Acknowledgments

The study is supported by grants from the Victorian Health Promotion Foundation, National Health and Medical Research Council (NHMRC) of Australia and Amgen (Europe) GmBH. SLB is supported by a NHMRC Early Career Fellowship and LJW is supported by a NHMRC Career Development Fellowship. The study was supported by the National Health and Medical Council (NHMRC), The University of Melbourne Research Grant Scheme, American Society for Bone and Mineral Research (ASBMR), Perpetual Trustees, Amgen and the Geelong Region Medical Research Foundation, but they played no part in the design or conduct of the study; collection, management, analysis, and interpretation of the data; or in preparation, review, or approval of the manuscript. Sharon Brennan was supported by NHMRC Early Career Fellowship (#519404), and NHMRC Postdoctoral (Training) Fellowship (#1012472); Mark Kotowicz was a recipient of the grants from the NHMRC (projects #251638, #299831, #628582), Geelong Regional Medical Research Foundation, and Amgen (Europe) GmBH; Julie Pasco was a recipient of grants from the NHMRC (projects #251638, #299831, #628582), Geelong Regional Medical Research Foundation, Arthritis Foundation of Australia and Amgen (Europe) GmBH.

Conflict of Interest

Kara L Holloway, Sharon L Brennan, Mark A Kotowicz, Gosia Bucki-Smith, Amelia G Dobbins, Elizabeth N Timney, Lana J Williams and Julie A Pasco have no conflicts of interest.

Human and Animal Rights and Informed Consent

Informed consent was obtained from all participants and this study was approved by the Barwon Health Human Research and Ethics Committee and all participants provided informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara L. Holloway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holloway, K.L., Brennan, S.L., Kotowicz, M.A. et al. Age- and Sex-Related Patterns of First Fracture and Fracture Prevalence. Calcif Tissue Int 96, 38–44 (2015). https://doi.org/10.1007/s00223-014-9936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9936-6

Keywords

Navigation