Skip to main content

Advertisement

Log in

Bone’s Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone’s material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone ‘qualities’ than ‘quality’. These qualities are the subject of this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ural A, Vashishth D (2014) Hierarchical perspective of bone toughness-from molecules to fracture. Int Mater Rev 59:245–263

    Article  CAS  Google Scholar 

  2. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    Article  CAS  PubMed  Google Scholar 

  3. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210

    Article  CAS  PubMed  Google Scholar 

  4. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ (2014) Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. doi:10.1016/j.jmbbm.2014.07.008

    PubMed  Google Scholar 

  5. Karim L, Vashishth D (2012) Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One 7:e35047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tang SY, Vashishth D (2010) Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 46:148–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  CAS  PubMed  Google Scholar 

  9. Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    Article  CAS  PubMed  Google Scholar 

  10. Garnero P (2012) The contribution of collagen crosslinks to bone strength. BoneKEy Rep 1:182

    Article  PubMed Central  PubMed  Google Scholar 

  11. Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    CAS  PubMed  Google Scholar 

  12. Tang SY, Vashishth D (2011) The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech 44:330–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW 3rd, Ritchie RO (2011) Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci USA 108:14416–14421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Buehler MJ (2008) Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater 1:59–67

    Article  PubMed  Google Scholar 

  15. Hansma PK, Fantner GE, Kindt JH, Thurner PJ, Schitter G, Turner PJ, Udwin SF, Finch MM (2005) Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact 5:313–315

    CAS  PubMed  Google Scholar 

  16. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GA, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616

    Article  CAS  PubMed  Google Scholar 

  17. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, Vashishth D (2012) Dilatational band formation in bone. Proc Natl Acad Sci USA 109:19178–19183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, Ager JW 3rd, Ritchie RO, Alliston T (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46:1564–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G (2010) Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46:1204–1212

    Article  PubMed  Google Scholar 

  20. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  CAS  PubMed  Google Scholar 

  21. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

    Article  CAS  PubMed  Google Scholar 

  22. Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    PubMed Central  PubMed  Google Scholar 

  23. Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482

    Article  CAS  PubMed  Google Scholar 

  24. Bala Y, Farlay D, Boivin G (2013) Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 24:2153–2166

    Article  CAS  PubMed  Google Scholar 

  25. Legeros RZ, Trautz OR, Legeros JP, Klein E (1968) Carbonate substitution in the apatitic structure. Bull Soc Chim Fr 4:1712–1718

    Google Scholar 

  26. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104

    Article  CAS  Google Scholar 

  27. Follet H, Farlay D, Bala Y, Viguet-Carrin S, Gineyts E, Burt-Pichat B, Wegrzyn J, Delmas P, Boivin G, Chapurlat R (2013) Determinants of microdamage in elderly human vertebral trabecular bone. PLoS One 8:e55232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Boskey AL (2003) Bone mineral crystal size. Osteoporos Int 14(Suppl. 5):16–21

    Google Scholar 

  29. Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO3(2–). J Bone Miner Res 16:893–900

    Article  CAS  PubMed  Google Scholar 

  30. Ong HH, Wright AC, Wehrli FW (2012) Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res 27:2573–2581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X (2006) The influence of water removal on the strength and toughness of cortical bone. J Biomech 39:931–938

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lees S (1981) A mixed packing model for bone collagen. Calcif Tissue Int 33:591–602

    Article  CAS  PubMed  Google Scholar 

  33. Nomura S, Hiltner A, Lando JB, Baer E (1977) Interaction of water with native collagen. Biopolymers 16:231–246

    Article  CAS  PubMed  Google Scholar 

  34. Currey J (1965) Anelasticity in bone and echinoderm skeletons. J Exp Biol 43:279

    Google Scholar 

  35. Townsend PR, Rose RM, Radin EL (1975) Buckling studies of single human trabeculae. J Biomech 8:199–201

    Article  CAS  PubMed  Google Scholar 

  36. Legeros RZ (1981) Apatites in biological systems. Prog Crystal Growth Charact 4:1–45

    Article  CAS  Google Scholar 

  37. Fratzl P, Fratzl-Zelman N, Klaushofer K (1993) Collagen packing and mineralization. An X-ray scattering investigation of turkey leg tendon. Biophys J 64:260–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Timmins PA, Wall JC (1977) Bone water. Calcif Tissue Res 23:1–5

    Article  CAS  PubMed  Google Scholar 

  39. Reznikov N, Chase H, Brumfeld V, Shahar R, Weiner S (2015) The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization. Bone 71:189–195

    Article  PubMed  Google Scholar 

  40. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystal and cellular, structural, and phsical chemical mechanisms in their formation. Rev Mineral Geo Chem 64:223–282

    Article  CAS  Google Scholar 

  41. Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille MM, Babonneau F, Azais T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153

    Article  CAS  PubMed  Google Scholar 

  42. Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184

    Article  CAS  PubMed  Google Scholar 

  43. Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885

    CAS  PubMed  Google Scholar 

  44. Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386

    Article  CAS  PubMed  Google Scholar 

  45. Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–391

    Article  CAS  PubMed  Google Scholar 

  46. O’Brien FJ, Taylor D, Clive Lee T (2005) The effect of bone microstructure on the initiation and growth of microcracks. J Orthop Res 23:475–480

    Article  PubMed  Google Scholar 

  47. Frasca P (1981) Scanning-electron microscopy studies of ‘ground substance’ in the cement lines, resting lines, hypercalcified rings and reversal lines of human cortical bone. Acta Anat (Basel) 109:115–121

    Article  CAS  Google Scholar 

  48. Burr DB, Schaffler MB, Frederickson RG (1988) Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 21:939–945

    Article  CAS  PubMed  Google Scholar 

  49. Skedros JG, Holmes JL, Vajda EG, Bloebaum RD (2005) Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol 286:781–803

    Article  PubMed  Google Scholar 

  50. Saha S, Hayes WC (1977) Relations between tensile impact properties and microstructure of compact bone. Calcif Tissue Res 24:65–72

    Article  CAS  PubMed  Google Scholar 

  51. Mohsin S, O’Brien FJ, Lee TC (2006) Osteonal crack barriers in ovine compact bone. J Anat 208:81–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yeni YN, Norman TL (2000) Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J Biomed Mater Res 51:504–509

    Article  CAS  PubMed  Google Scholar 

  53. Heaney RP (1994) The bone-remodeling transient: implications for the interpretation of clinical studies of bone mass change. J Bone Miner Res 9:1515–1523

    Article  CAS  PubMed  Google Scholar 

  54. Heaney RP (2001) The bone remodeling transient: interpreting interventions involving bone-related nutrients. Nutr Rev 59:327–334

    Article  CAS  PubMed  Google Scholar 

  55. Van Tran PT, Vignery A, Baron R (1982) Cellular kinetics of the bone remodeling sequence in the rat. Anat Rec 202:445–451

    Article  Google Scholar 

  56. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–537

    Article  CAS  PubMed  Google Scholar 

  57. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, Burr DB (2008) In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol 27:34–41

    Article  CAS  PubMed  Google Scholar 

  58. Bala Y, Depalle B, Douillard T, Meille S, Clement P, Follet H, Chevalier J, Boivin G (2011) Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Behav Biomed Mater 4:1473–1482

    Article  CAS  PubMed  Google Scholar 

  59. Hernandez CJ, Gupta A, Keaveny TM (2006) A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res 21:1248–1255

    Article  PubMed Central  PubMed  Google Scholar 

  60. Riggs BL, Melton LJ 3rd (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Article  PubMed  Google Scholar 

  61. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL (1990) Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 5:311–319

    Article  CAS  PubMed  Google Scholar 

  62. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    Article  CAS  PubMed  Google Scholar 

  63. Vedi S, Compston JE, Webb A, Tighe JR (1983) Histomorphometric analysis of dynamic parameters of trabecular bone formation in the iliac crest of normal British subjects. Metab Bone Dis Relat Res 5:69–74

    Article  PubMed  Google Scholar 

  64. Seeman E, Delmas PD (2006) Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  65. Currey JD (1964) Some effects of ageing in human haversian systems. J Anat 98:69–75

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Jowsey J (1966) Studies of haversian systems in man and some animals. J Anat 100:857–864

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Landeros O, Frost H (1964) The cross section size of the osteon. Henry Ford Hosp Med Bull 12:517–525

    Google Scholar 

  68. Bala Y, Zebaze R, Ghasem-Zadeh A, Atkinson EJ, Iuliano S, Peterson JM, Amin S, Bjornerem A, Melton LJ III, Johansson H, Kanis JA, Khosla S, Seeman E (2014) Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res. doi:10.1002/jbmr.2167

    PubMed Central  Google Scholar 

  69. Martin RB (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10:179–222

    CAS  PubMed  Google Scholar 

  70. Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD, Bousson V (2009) The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study. Bone 45:435–442

    Article  CAS  PubMed  Google Scholar 

  71. Koehne T, Vettorazzi E, Kusters N, Luneburg R, Kahl-Nieke B, Puschel K, Amling M, Busse B (2014) Trends in trabecular architecture and bone mineral density distribution in 152 individuals aged 30–90 years. Bone 66:31–38

    Article  CAS  PubMed  Google Scholar 

  72. Sharpe WD (1979) Age changes in human bone: an overview. Bull N Y Acad Med 55:757–773

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22

    Article  CAS  PubMed  Google Scholar 

  74. Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260

    Article  CAS  PubMed  Google Scholar 

  75. Currey JD (1979) Changes in the impact energy absorption of bone with age. J Biomech 12:459–469

    Article  CAS  PubMed  Google Scholar 

  76. Saito M, Fujii K, Soshi S, Tanaka T (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17:986–995

    Article  CAS  PubMed  Google Scholar 

  77. Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79:160–168

    Article  CAS  PubMed  Google Scholar 

  78. Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, Tyler JH, Dean DD, Wang X (2006) Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue. Bone 39:1210–1217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Goldman HM, Bromage TG, Thomas CD, Clement JG (2003) Preferred collagen fiber orientation in the human mid-shaft femur. Anat Rec A Discov Mol Cell Evol Biol 272:434–445

    Article  PubMed  CAS  Google Scholar 

  80. Faibish D, Ott SM, Boskey AL (2006) Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443:28–38

    Article  PubMed Central  PubMed  Google Scholar 

  81. Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie LG, Meunier PJ, Delmas PD (2008) The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43:532–538

    Article  CAS  PubMed  Google Scholar 

  82. Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191

    Article  CAS  PubMed  Google Scholar 

  83. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P (2009) During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech 42:1917–1925

    Article  PubMed  Google Scholar 

  85. Koester KJ, Ager JW 3rd, Ritchie RO (2008) The true toughness of human cortical bone measured with realistically short cracks. Nat Mater 7:672–677

    Article  CAS  PubMed  Google Scholar 

  86. Willett TL, Pasquale J, Grynpas MD (2014) Collagen modifications in postmenopausal osteoporosis: advanced glycation end products may affect bone volume, structure and quality. Curr Osteoporos Rep 12:329–337

    Article  PubMed  Google Scholar 

  87. Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, Randall C, Bridges D, Weaver JC, Proctor A, Brimer D, Koester KJ, Ritchie RO, Hansma PK (2010) Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 25:1877–1885

    Article  PubMed Central  PubMed  Google Scholar 

  88. Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571

    Article  PubMed Central  PubMed  Google Scholar 

  89. Sarathchandra P, Pope FM, Ali SY (1999) Morphometric analysis of type I collagen fibrils in the osteoid of osteogenesis imperfecta. Calcif Tissue Int 65:390–395

    Article  CAS  PubMed  Google Scholar 

  90. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, Alliston T, Kazakia G, Ritchie RO, Shefelbine SJ (2014) How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res 29:1392–1401

    Article  PubMed Central  PubMed  Google Scholar 

  91. Imbert L, Auregan JC, Pernelle K, Hoc T (2014) Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 65:18–24

    Article  CAS  PubMed  Google Scholar 

  92. Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, Rauch F, Wagermaier W (2014) Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone 60:122–128

    Article  CAS  PubMed  Google Scholar 

  93. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  CAS  PubMed  Google Scholar 

  94. Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F (2008) Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int 82:263–270

    Article  CAS  PubMed  Google Scholar 

  95. Sarathchandra P, Kayser MV, Ali SY (1999) Abnormal mineral composition of osteogenesis imperfecta bone as determined by electron probe X-ray microanalysis on conventional and cryosections. Calcif Tissue Int 65:11–15

    Article  CAS  PubMed  Google Scholar 

  96. Traub W, Arad T, Vetter U, Weiner S (1994) Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol 14:337–345

    Article  CAS  PubMed  Google Scholar 

  97. Vanleene M, Porter A, Guillot PV, Boyde A, Oyen M, Shefelbine S (2012) Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone 50:1317–1323

    Article  PubMed Central  PubMed  Google Scholar 

  98. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151–164

    Article  CAS  PubMed  Google Scholar 

  99. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36:6–12

    Article  CAS  PubMed  Google Scholar 

  100. Demiaux B, Arlot ME, Chapuy MC, Meunier PJ, Delmas PD (1992) Serum osteocalcin is increased in patients with osteomalacia: correlations with biochemical and histomorphometric findings. J Clin Endocrinol Metab 74:1146–1151

    CAS  PubMed  Google Scholar 

  101. Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JH, Terrill NJ, Williams GR, Brown MA, Croucher PI, Brown SD, Cox RD, Barber AH, Thakker RV, Gupta HS (2012) Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res 27:876–890

    Article  PubMed  Google Scholar 

  102. Karunaratne A, Boyde A, Esapa CT, Hiller J, Terrill NJ, Brown SD, Cox RD, Thakker RV, Gupta HS (2013) Symmetrically reduced stiffness and increased extensibility in compression and tension at the mineralized fibrillar level in rachitic bone. Bone 52:689–698

    Article  CAS  PubMed  Google Scholar 

  103. Karunaratne A, Davis GR, Hiller J, Esapa CT, Terrill NJ, Brown SD, Cox RD, Thakker RV, Gupta HS (2012) Hypophosphatemic rickets is associated with disruption of mineral orientation at the nanoscale in the flat scapula bones of rachitic mice with development. Bone 51:553–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Boivin G, Meunier PJ (1993) Effects of fluoride on bone mineral. Res Clin Forums 15:13–19

    Google Scholar 

  105. Mousny M, Omelon S, Wise L, Everett ET, Dumitriu M, Holmyard DP, Banse X, Devogelaer JP, Grynpas MD (2008) Fluoride effects on bone formation and mineralization are influenced by genetics. Bone 43:1067–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone 10:89–99

    Article  CAS  PubMed  Google Scholar 

  107. Yoder KM, Mabelya L, Robison VA, Dunipace AJ, Brizendine EJ, Stookey GK (1998) Severe dental fluorosis in a Tanzanian population consuming water with negligible fluoride concentration. Commun Dent Oral Epidemiol 26:382–393

    Article  CAS  Google Scholar 

  108. Whyte MP (2003) Genetic, developmental and dysplastic skeletal disorders. American Society for Bone and Mineral Research, Washington

    Google Scholar 

  109. Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164:1537–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Bollerslev J, Marks SC Jr, Mosekilde L, Lian JB, Stein GS, Mosekilde L (1994) Cortical bone osteocalcin content and matrix composition in autosomal dominant osteopetrosis type I. Eur J Endocrinol 130:592–594

    Article  CAS  PubMed  Google Scholar 

  111. Wojtowicz A, Dziedzic-Goclawska A, Kaminski A, Stachowicz W, Wojtowicz K, Marks SC Jr, Yamauchi M (1997) Alteration of mineral crystallinity and collagen cross-linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor-1. Bone 20:127–132

    Article  CAS  PubMed  Google Scholar 

  112. Boskey AL, Marks SC Jr (1985) Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rats. Calcif Tissue Int 37:287–292

    Article  CAS  PubMed  Google Scholar 

  113. Tuukkanen J, Koivukangas A, Jamsa T, Sundquist K, Mackay CA, Marks SC Jr (2000) Mineral density and bone strength are dissociated in long bones of rat osteopetrotic mutations. J Bone Miner Res 15:1905–1911

    Article  CAS  PubMed  Google Scholar 

  114. Semba I, Ishigami T, Sugihara K, Kitano M (2000) Higher osteoclastic demineralization and highly mineralized cement lines with osteocalcin deposition in a mandibular cortical bone of autosomal dominant osteopetrosis type II: ultrastructural and undecalcified histological investigations. Bone 27:389–395

    Article  CAS  PubMed  Google Scholar 

  115. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2005) Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26:217–231

    Article  CAS  PubMed  Google Scholar 

  116. Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123:666–681

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, Klaushofer K (2004) Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab 89:1538–1547

    Article  CAS  PubMed  Google Scholar 

  118. Meunier PJ, Coindre JM, Edouard CM, Arlot ME (1980) Bone histomorphometry in Paget’s disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum 23:1095–1103

    Article  CAS  PubMed  Google Scholar 

  119. Rebel A, Basle M, Pouplard A, Malkani K, Filmon R, Lepatezour A (1980) Bone tissue in Paget’s disease of bone. Ultrastructure and Immunocytology. Arthritis Rheum 23:1104–1114

    Article  CAS  PubMed  Google Scholar 

  120. Misra DP (1975) Crosslink in bone collagen in Paget’s disease. J Clin Pathol 28:305–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Zimmermann EA, Kohne T, Bale HA, Panganiban B, Gludovatz B, Zustin J, Hahn M, Amling M, Ritchie RO, Busse B (2014) Modifications to nano- and microstructural quality and the effects on mechanical integrity in paget’s disease of bone. J Bone Miner Res 30(2):264–273

    Article  CAS  Google Scholar 

  122. Bilezikian J, Silverberg S (2006) Primary hyperparathyroidism. In: Favus M (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th edn. American Society for Bone and Mineral Research, Washington, pp 181–185

    Google Scholar 

  123. Khosla S, Melton LJ 3rd, Wermers RA, Crowson CS, O’Fallon W, Riggs B (1999) Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res 14:1700–1707

    Article  CAS  PubMed  Google Scholar 

  124. Bilezikian JP (2003) Bone strength in primary hyperparathyroidism. Osteoporos Int 14(Suppl 5):S113–S115 discussion S115-117

    Article  PubMed  Google Scholar 

  125. Silverberg SJ, Shane E, de la Cruz L, Dempster DW, Feldman F, Seldin D, Jacobs TP, Siris ES, Cafferty M, Parisien MV et al (1989) Skeletal disease in primary hyperparathyroidism. J Bone Miner Res 4:283–291

    Article  CAS  PubMed  Google Scholar 

  126. Vu TD, Wang XF, Wang Q, Cusano NE, Irani D, Silva BC, Ghasem-Zadeh A, Udesky J, Romano ME, Zebaze R, Jerums G, Boutroy S, Bilezikian JP, Seeman E (2013) New insights into the effects of primary hyperparathyroidism on the cortical and trabecular compartments of bone. Bone 55:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  128. Roschger P, Dempster DW, Zhou H, Paschalis EP, Silverberg SJ, Shane E, Bilezikian JP, Klaushofer K (2007) New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res 22:717–723

    Article  PubMed  Google Scholar 

  129. Zoehrer R, Dempster DW, Bilezikian JP, Zhou H, Silverberg SJ, Shane E, Roschger P, Paschalis EP, Klaushofer K (2008) Bone quality determined by Fourier transform infrared imaging analysis in mild primary hyperparathyroidism. J Clin Endocrinol Metab 93:3484–3489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    Article  CAS  PubMed  Google Scholar 

  131. van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, Papapoulos SE (2011) Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26:2804–2811

    Article  PubMed  CAS  Google Scholar 

  132. Eriksen EF (2014) Commentary on sclerostin deficiency is linked to altered bone composition. J Bone Miner Res 29:2141–2143

    Article  PubMed  Google Scholar 

  133. Hassler N, Roschger A, Gamsjaeger S, Kramer I, Lueger S, van Lierop A, Roschger P, Klaushofer K, Paschalis EP, Kneissel M, Papapoulos S (2014) Sclerostin deficiency is linked to altered bone composition. J Bone Miner Res 29:2144–2151

    Article  CAS  PubMed  Google Scholar 

  134. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18:427–444

    Article  CAS  PubMed  Google Scholar 

  135. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM, Study of Osteoporotic Fractures Research G, Osteoporotic Fractures in Men Research G, Health A, Body Composition Research G (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192

  136. Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787–795

    Article  PubMed Central  PubMed  Google Scholar 

  137. Granke M, Coulmier A, Uppuganti S, Gaddy JA, Does MD, Nyman JS (2014) Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior. J Mech Behav Biomed Mater 37:174–185

    Article  PubMed  Google Scholar 

  138. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC, Health A, Body Composition S (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Saito M, Kida Y, Kato S, Marumo K (2014) Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12:181–188

    Article  PubMed  Google Scholar 

  140. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  CAS  PubMed  Google Scholar 

  141. Thaler R, Agsten M, Spitzer S, Paschalis EP, Karlic H, Klaushofer K, Varga F (2011) Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J Biol Chem 286:5578–5588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Pritchard JM, Papaioannou A, Tomowich C, Giangregorio LM, Atkinson SA, Beattie KA, Adachi JD, DeBeer J, Winemaker M, Avram V, Schwarcz HP (2013) Bone mineralization is elevated and less heterogeneous in adults with type 2 diabetes and osteoarthritis compared to controls with osteoarthritis alone. Bone 54:76–82

    Article  CAS  PubMed  Google Scholar 

  143. Farlay D, Armas L, Gineyts E, Recker R, Boivin G (2014) Pentosidine and degree of mineralization are increased in bone from fractured-patients with type 1 diabetes mellitus. J Bone Miner Res 29(Suppl 1)

  144. Smith SY, Recker RR, Hannan M, Muller R, Bauss F (2003) Intermittent intravenous administration of the bisphosphonate ibandronate prevents bone loss and maintains bone strength and quality in ovariectomized cynomolgus monkeys. Bone 32:45–55

    Article  CAS  PubMed  Google Scholar 

  145. Boivin G, Lips P, Ott SM, Harper KD, Sarkar S, Pinette KV, Meunier PJ (2003) Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab 88:4199–4205

    Article  CAS  PubMed  Google Scholar 

  146. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  CAS  PubMed  Google Scholar 

  147. Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759

    Article  CAS  PubMed  Google Scholar 

  148. Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21:1106–1112

    Article  CAS  PubMed  Google Scholar 

  149. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  CAS  PubMed  Google Scholar 

  150. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly Zoledronic acid. J Bone Miner Res 26:12–18

    Article  CAS  PubMed  Google Scholar 

  151. Hassler N, Gamsjaeger S, Hofstetter B, Brozek W, Klaushofer K, Paschalis EP (2014) Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos Int 26(1):339–352

    Article  PubMed  CAS  Google Scholar 

  152. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27(4):825–834

    Article  CAS  PubMed  Google Scholar 

  153. Bala Y, Farlay D, Chapurlat R, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655

    Article  CAS  PubMed  Google Scholar 

  154. Burr DB, Liu Z, Allen MR (2014) Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs. Bone 71C:58–62

    Google Scholar 

  155. Shane E (2010) Evolving data about subtrochanteric fractures and bisphosphonates. N Engl J Med 362:1825–1827

    Article  CAS  PubMed  Google Scholar 

  156. Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD (2008) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 19:329–337

    Article  CAS  PubMed  Google Scholar 

  157. Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Hofstetter B, Gamsjaeger S, Varga F, Dobnig H, Stepan JJ, Petto H, Pavo I, Klaushofer K, Paschalis EP (2014) Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naive or on long-term alendronate therapy. Osteoporos Int 25:2709–2719

    Article  CAS  PubMed  Google Scholar 

  160. Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354

    Article  CAS  PubMed  Google Scholar 

  161. Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP (2012) Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone 51:114–122

    Article  PubMed Central  PubMed  Google Scholar 

  162. Ominsky MS, Stouch B, Schroeder J, Pyrah I, Stolina M, Smith SY, Kostenuik PJ (2011) Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone 49(2):162–173

    Article  CAS  PubMed  Google Scholar 

  163. Kostenuik PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS (2011) Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone 49(2):151–161

    Article  CAS  PubMed  Google Scholar 

  164. Misof B, Roschger P, Messmer P, Kostenuik P, Klaushofer K (2011) The effect of Denosumab on the bone matrix mineralization in mice. J Bone Miner Res 26 (Suppl.1)

  165. Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, Almer JD, Stock SR, Allen MR, Burr DB (2014) Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone 61:191–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425

    Article  CAS  PubMed  Google Scholar 

  167. Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R, Kuroda T (2011) Changes in the contents of enzymatic immature, mature, and non-enzymatic senescent cross-links of collagen after once-weekly treatment with human parathyroid hormone (1-34) for 18 months contribute to improvement of bone strength in ovariectomized monkeys. Osteoporos Int 22:2373–2383

    Article  CAS  PubMed  Google Scholar 

  168. Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649

    Article  CAS  PubMed  Google Scholar 

  169. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  CAS  PubMed  Google Scholar 

  170. Jerome CP, Johnson CS, Vafai HT, Kaplan KC, Bailey J, Capwell B, Fraser F, Hansen L, Ramsay H, Shadoan M, Lees CJ, Thomsen JS, Mosekilde L (1999) Effect of treatment for 6 months with human parathyroid hormone (1-34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 25:301–309

    Article  CAS  PubMed  Google Scholar 

  171. Sato M, Zeng GQ, Turner CH (1997) Biosynthetic human parathyroid hormone (1-34) effects on bone quality in aged ovariectomized rats. Endocrinology 138:4330–4337

    CAS  PubMed  Google Scholar 

  172. Ejersted C, Andreassen TT, Hauge EM, Melsen F, Oxlund H (1995) Parathyroid hormone (1-34) increases vertebral bone mass, compressive strength, and quality in old rats. Bone 17:507–511

    Article  CAS  PubMed  Google Scholar 

  173. Allen MR, Burr D (2006) Parathyroid hormone and bone biomechanics. Clin Rev Bone Miner Metab 4:259–268

    Article  CAS  Google Scholar 

  174. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25:948–959

    Article  CAS  PubMed  Google Scholar 

  175. Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K, Miller LM, Sumner DR (2014) Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res 29:1597–1607

    Article  CAS  PubMed  Google Scholar 

  176. Tommasini SM, Nasser P, Hu B, Jepsen KJ (2008) Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. J Bone Miner Res 23:236–246

    Article  PubMed Central  PubMed  Google Scholar 

  177. Currey JD (2002) Bones: structure and mechanics. Princeton University Press, New Jersey, pp 1–380

    Google Scholar 

Download references

Conflict of interest

Bala and Seeman declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Seeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, Y., Seeman, E. Bone’s Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 97, 308–326 (2015). https://doi.org/10.1007/s00223-015-9971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-9971-y

Keywords

Navigation