Skip to main content
Log in

Differing Effects of Parathyroid Hormone, Alendronate, and Odanacatib on Bone Formation and on the Mineralization Process in Intracortical and Endocortical Bone of Ovariectomized Rabbits

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone is formed by deposition of a collagen-containing matrix (osteoid) that hardens over time as mineral crystals accrue and are modified; this continues until bone remodeling renews that site. Pharmacological agents for osteoporosis differ in their effects on bone remodeling, and we hypothesized that they may differently modify bone mineral accrual. We, therefore, assessed newly formed bone in mature ovariectomized rabbits treated with the anti-resorptive bisphosphonate alendronate (ALN—100µ g/kg/2×/week), the anabolic parathyroid hormone (PTH (1–34)—15µ g/kg/5×/week), or the experimental anti-resorptive odanacatib (ODN 7.5 µM/day), which suppresses bone resorption without suppressing bone formation. Treatments were administered for 10 months commencing 6 months after ovariectomy (OVX). Strength testing, histomorphometry, and synchrotron Fourier-transform infrared microspectroscopy were used to measure bone strength, bone formation, and mineral accrual, respectively, in newly formed endocortical and intracortical bone. In Sham and OVX endocortical and intracortical bone, three modifications occurred as the bone matrix aged: mineral accrual (increase in mineral:matrix ratio), carbonate substitution (increase in carbonate:mineral ratio), and collagen molecular compaction (decrease in amide I:II ratio). ALN suppressed bone formation but mineral accrued normally at those sites where bone formation occurred. PTH stimulated bone formation on endocortical, periosteal, and intracortical bone surfaces, but mineral accrual and carbonate substitution were suppressed, particularly in intracortical bone. ODN treatment did not suppress bone formation, but newly deposited endocortical bone matured more slowly with ODN, and ODN-treated intracortical bone had less carbonate substitution than controls. In conclusion, these agents differ in their effects on the bone matrix. While ALN suppresses bone formation, it does not modify bone mineral accrual in endocortical or intracortical bone. While ODN does not suppress bone formation, it slows matrix maturation. PTH stimulates modelling-based bone formation not only on endocortical and trabecular surfaces, but may also do so in intracortical bone; at this site, new bone deposited contains less mineral than normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roelofs AJ, Thompson K, Gordon S, Rogers MJ (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12:6222s–6230 s

    Article  CAS  Google Scholar 

  2. Sims NA, Ng KW (2014) Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib. Curr Osteoporos Rep 12:98–106

    Article  Google Scholar 

  3. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49:701–705

    Article  CAS  Google Scholar 

  4. Allen MR, Burr DB (2007) Mineralization, microdamage, and matrix: How bisphosphonates influence material properties of bone. IBMS BoneKEy 4:49–60

    Article  Google Scholar 

  5. Shane E, Burr D, Ebeling PR et al (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25:2267–2294

    Article  Google Scholar 

  6. Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, Duong le T (2012) Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 27:524–537

    Article  CAS  Google Scholar 

  7. Pennypacker BL, Duong LT, Cusick TE et al (2011) Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res 26:252–262

    Article  CAS  Google Scholar 

  8. Recker RR, Langdahl B, Ellis G, De Villiers T, Cohn DH, Doleckyj S, Giezek H, Santora AC, Duong LT (2016) Effects of odanacatib on transilial cortical remodeling/modeling and microarchitecture in postmenopausal women with osteoporosis: 5-year data from the extension of the phase 3 long-term odanacatib fracture trial (LOFT). J Bone Miner Res 31:1097

    Article  Google Scholar 

  9. Boskey AL, Gelb BD, Pourmand E, Kudrashov V, Doty SB, Spevak L, Schaffler MB (2009) Ablation of cathepsin k activity in the young mouse causes hypermineralization of long bone and growth plates. Calcif Tissue Int 84:229–239

    Article  CAS  Google Scholar 

  10. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  Google Scholar 

  11. Miller PD, Hattersley G, Riis BJ et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316:722–733

    Article  CAS  Google Scholar 

  12. Ma YL, Zeng Q, Donley DW, Ste-Marie LG, Gallagher JC, Dalsky GP, Marcus R, Eriksen EF (2006) Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res 21:855–864

    Article  CAS  Google Scholar 

  13. Lindsay R, Cosman F, Zhou H, Bostrom MP, Shen VW, Cruz JD, Nieves JW, Dempster DW (2006) A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res 21:366–373

    Article  CAS  Google Scholar 

  14. Burr DB, Hirano T, Turner CH, Hotchkiss C, Brommage R, Hock JM (2001) Intermittently administered human parathyroid hormone (1–34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res 16:157–165

    Article  CAS  Google Scholar 

  15. Vrahnas C, Pearson TA, Brunt AR, Forwood MR, Bambery KR, Tobin MJ, Martin TJ, Sims NA (2016) Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Bone 93:146–154

    Article  CAS  Google Scholar 

  16. Acerbo AS, Carr GL, Judex S, Miller LM (2012) Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy. Anal Chem 84:3607–3613

    Article  CAS  Google Scholar 

  17. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, Burr DB (2008) In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol 27:34–41

    Article  CAS  Google Scholar 

  18. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  Google Scholar 

  19. Miller LM, Dumas P, Jamin N, Teillaud J-L, Miklossy J, Forro L (2002) Combining IR spectroscopy with fluorescence imaging in a single microscope: biomedical applications using a synchrotron infrared source (invited). Rev Sci Instrum 73:1357–1360

    Article  CAS  Google Scholar 

  20. Wooten F (1973) Optical properties of solids. Academic Press, New York

    Google Scholar 

  21. Ohta K, Ishida H (1988) Comparison among several numerical integration methods for Kramers-Kronig transofrmation. Appl Spectrosc 42:952–957

    Article  CAS  Google Scholar 

  22. Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18:1005–1011

    Article  CAS  Google Scholar 

  23. Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478

    Article  CAS  Google Scholar 

  24. Gadaleta SJ, Camacho NP, Mendelsohn R, Boskey AL (1996) Fourier transform infrared microscopy of calcified turkey leg tendon. Calcif Tissue Int 58:17–23

    Article  CAS  Google Scholar 

  25. Bi X, Li G, Doty SB, Camacho NP (2005) A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarthr Cartil 13:1050–1058

    Article  CAS  Google Scholar 

  26. Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147

    Article  CAS  Google Scholar 

  27. Kim SW, Pajevic PD, Selig M, Barry KJ, Yang JY, Shin CS, Baek WY, Kim JE, Kronenberg HM (2012) Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res 27:2075–2084

    Article  CAS  Google Scholar 

  28. Sims NA, Martin TJ (2015) Coupling signals between the osteoclast and osteoblast: how are messages transmitted between these temporary visitors to the bone surface? Front Endocrinol 6:41

    Article  Google Scholar 

  29. Zebaze R, Takao-Kawabata R, Peng Y, Zadeh AG, Hirano K, Yamane H, Takakura A, Isogai Y, Ishizuya T, Seeman E (2017) Increased cortical porosity is associated with daily, not weekly, administration of equivalent doses of teriparatide. Bone 99:80–84

    Article  CAS  Google Scholar 

  30. Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV, Vahle J, Brommage R, Jerome CP, Turner CH (2004) Teriparatide [PTH(1–34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res 19:623–629

    Article  CAS  Google Scholar 

  31. Burr DB, Allen MR (2006) Parathyroid hormone and bone biomechanics. Clin Rev Bone Miner Metab 4:259–268

    Article  Google Scholar 

  32. Tonna S, Takyar FM, Vrahnas C et al (2014) EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB J 28:4482–4496

    Article  CAS  Google Scholar 

  33. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  CAS  Google Scholar 

  34. Paschalis EP, Burr DB, Mendelsohn R, Hock JM, Boskey AL (2003) Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1–34) for 18 months. J Bone Miner Res 18:769–775

    Article  CAS  Google Scholar 

  35. Misof BM, Roschger P, Cosman F et al (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  CAS  Google Scholar 

  36. Harvey NC, Kanis JA, Odén A, Burge RT, Mitlak BH, Johansson H, McCloskey EV (2015) FRAX and the effect of teriparatide on vertebral and non-vertebral fracture. Osteoporos Int 26:2677–2684

    Article  CAS  Google Scholar 

  37. Pennypacker BL, Chen CM, Zheng H, Shih MS, Belfast M, Samadfam R, Duong LT (2014) Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J Bone Miner Res 29:1847–1858

    Article  CAS  Google Scholar 

  38. Chia LY, Walsh NC, Martin TJ, Sims NA (2015) Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone 72:34–42

    Article  CAS  Google Scholar 

  39. Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    PubMed  PubMed Central  Google Scholar 

  40. McCreadie BR, Morris MD, Chen TC, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195

    Article  CAS  Google Scholar 

  41. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83:1032–1045

    Article  CAS  Google Scholar 

  42. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  CAS  Google Scholar 

  43. Roschger P, Lombardi A, Misof BM, Maier G, Fratzl-Zelman N, Fratzl P, Klaushofer K (2010) Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res 25:48–55

    Article  CAS  Google Scholar 

  44. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672

    Article  CAS  Google Scholar 

  45. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678

    Article  CAS  Google Scholar 

  46. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  CAS  Google Scholar 

  47. Lloyd AA, Gludovatz B, Riedel C et al (2017) Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci USA 114:8722–8727

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge technical assistance from Christine Jun, advice on the KKT method from Alvin Acerbo and Lisa Miller at Brookhaven National Laboratories, and very helpful critique from T. John Martin. This work was funded by an investigator-initiated Grant from MSD (AU) (No. 53291) to NAS. NAS was funded by an NHMRC Senior Research Fellowship. sFTIRM was undertaken on the Infrared Microspectroscopy beamline at the Australian Synchrotron, part of ANSTO. St. Vincent’s Institute receives funds from the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Contributions

Study design: NAS and LTD. Study conduct: NAS, CV, PB, TAP, BLP, KRB. Data collection: CV, TAP, BLP. Data analysis: CV, TAP, BLP, NAS. Data interpretation: CV, PB, KRB, LTD, NAS. Drafting manuscript: CV, PB and NAS. Revising manuscript content: all authors. Approving final version of manuscript: All authors. NAS takes responsibility for the integrity of the data analysis.

Corresponding author

Correspondence to Natalie A. Sims.

Ethics declarations

Conflict of interest

Brenda L. Pennypacker is, and Le T. Duong was, an employee of Merck & Co., Inc., Kenilworth, NJ, USA which partly sponsored the study through an investigator-initiated grant to NAS. Christina Vrahnas, Pascal R. Buenzli, Thomas A. Pearson, Keith R. Bambery and Mark J. Tobin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This study was conducted in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee of MRL, West Point. For this type of study formal consent is not required

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrahnas, C., Buenzli, P.R., Pearson, T.A. et al. Differing Effects of Parathyroid Hormone, Alendronate, and Odanacatib on Bone Formation and on the Mineralization Process in Intracortical and Endocortical Bone of Ovariectomized Rabbits. Calcif Tissue Int 103, 625–637 (2018). https://doi.org/10.1007/s00223-018-0455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0455-8

Keywords

Navigation