Skip to main content

Advertisement

Log in

Old and New Drugs for the Management of Bone Disorders in CKD

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Disturbances in mineral and bone metabolism are common in patients with chronic kidney disease (CKD), especially those undergoing dialysis. Renal osteodystrophy, which describes an alteration of bone morphology, is an important component of this systemic disorder and may explain the elevated risk of fracture which adversely affects morbidity and mortality. The most common form of renal osteodystrophy is high-turnover bone disease (osteitis fibrosa), which is induced by secondary hyperparathyroidism (SHPT). During the past decade, there has been considerable advances in the management of SHPT, with the introduction of the calcimimetic agents, the optimized use of nutritional and active vitamin D, and the accumulated experience with surgical parathyroidectomy. Studies supported that these advances could translate into improvement of renal bone disease and fracture prevention, as well as decreasing the risk of cardiovascular events and mortality. In this review, we summarize the available clinical evidence on the effect of old and new drugs on bone disorders in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Isakova T, Wahl P, Vargas GS et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shigematsu T, Kazama JJ, Yamashita T et al (2004) Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 44:250–256

    Article  CAS  PubMed  Google Scholar 

  3. Gutierrez O, Isakova T, Rhee E et al (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215

    Article  CAS  PubMed  Google Scholar 

  4. Fukuda N, Tanaka H, Tominaga Y et al (1993) Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 92:1436–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kifor O, Moore FD Jr, Wang P et al (1996) Reduced immunostaining for the extracellular Ca2þ-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab 81:1598–1606

    CAS  PubMed  Google Scholar 

  6. Komaba H, Goto S, Fujii H et al (2010) Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 77:232–238

    Article  CAS  PubMed  Google Scholar 

  7. Komaba H, Fukagawa M (2012) The role of FGF23 in CKD—with or without Klotho. Nat Rev Nephrol 8:484–490

    Article  CAS  PubMed  Google Scholar 

  8. Moe S, Drueke T, Cunningham J et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953

    Article  CAS  PubMed  Google Scholar 

  9. Sherrard DJ, Hercz G, Pei Y et al (1993) The spectrum of bone disease in end-stage renal failure: an evolving disorder. Kidney Int 43:436–442

    Article  CAS  PubMed  Google Scholar 

  10. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 113:S1–S130

    Google Scholar 

  11. Jadoul M, Albert JM, Akiba T et al (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 70:1358–1366

    Article  CAS  PubMed  Google Scholar 

  12. Coco M, Rush H (2000) Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis 36:1115–1121

    Article  CAS  PubMed  Google Scholar 

  13. Block GA, Martin KJ, de Francisco AL et al (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516–1525

    Article  CAS  PubMed  Google Scholar 

  14. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  15. Wolf M (2012) Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 82:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolisi GO, Moe SM (2005) The role of vitamin D in vascular calcification in chronic kidney disease. Semin Dial 18:307–314

    Article  PubMed  Google Scholar 

  17. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Update Work Group (2017) KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 7:1–59

    Article  Google Scholar 

  18. Thadhani R, Appelbaum E, Pritchett Y et al (2012) Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 307:674–684

    Article  CAS  PubMed  Google Scholar 

  19. Wang AY, Fang F, Chan J et al (2014) Effect of paricalcitol on left ventricular mass and function in CKD: the OPERA trial. J Am Soc Nephrol 25:175–186

    Article  CAS  PubMed  Google Scholar 

  20. Xiang W, Kong J, Chen S et al (2005) Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 288:E125–E132

    Article  CAS  PubMed  Google Scholar 

  21. Bodyak N, Ayus JC, Achinger S et al (2007) Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci USA 104:16810–16815

    Article  CAS  PubMed  Google Scholar 

  22. Baker LR, Muir JW, Sharman VL et al (1986) Controlled trial of calcitriol in hemodialysis patients. Clin Nephrol 26:185–191

    CAS  PubMed  Google Scholar 

  23. London GM, Marty C, Marchais SJ et al (2004) Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol 15:1943–1951

    Article  PubMed  Google Scholar 

  24. Brandenburg VM, Kramann R, Rothe H et al (2017) Calcific uraemic arteriolopathy (calciphylaxis): data from a large nationwide registry. Nephrol Dial Transplant 32:126–132

    CAS  PubMed  Google Scholar 

  25. Fukagawa M, Yokoyama K, Koiwa F et al (2013) Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorder. Ther Apher Dial 17:247–288

    Article  PubMed  Google Scholar 

  26. Torres A, Garcia S, Gomez A et al (2004) Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int 65:705–712

    Article  CAS  PubMed  Google Scholar 

  27. Ravani P, Malberti F, Tripepi G et al (2009) Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int 75:88–95

    Article  CAS  PubMed  Google Scholar 

  28. Biggar PH, Liangos O, Fey H et al (2011) Vitamin D, chronic kidney disease and survival: a pluripotent hormone or just another bone drug? Pediatr Nephrol 26:7–18

    Article  PubMed  Google Scholar 

  29. Stubbs JR, Idiculla A, Slusser J et al (2010) Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J Am Soc Nephrol 21:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agarwal R, Georgianos PI (2016) Con: Nutritional vitamin D replacement in chronic kidney disease and end-stage renal disease. Nephrol Dial Transplant 31:706–713

    Article  CAS  PubMed  Google Scholar 

  31. Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58

    Article  CAS  Google Scholar 

  32. Holick MF, Binkley NC, Bischoff-Ferrari HA et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930

    Article  CAS  PubMed  Google Scholar 

  33. Moe SM, Saifullah A, LaClair RE et al (2010) A randomized trial of cholecalciferol versus doxercalciferol for lowering parathyroid hormone in chronic kidney disease. Clin J Am Soc Nephrol 5:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sprague SM, Strugnell SA, Bishop CW (2017) Extended-release calcifediol for secondary hyperparathyroidism in stage 3–4 chronic kidney disease. Expert Rev Endocrinol Metab 12:289–301

    Article  CAS  PubMed  Google Scholar 

  35. Strugnell SA, Sprague SM, Ashfaq A et al (2019) Rationale for raising current clinical practice guideline target for serum 25-hydroxyvitamin D in chronic kidney disease. Am J Nephrol 49:284–293

    Article  CAS  PubMed  Google Scholar 

  36. Brown EM, Gamba G, Riccardi D et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  37. Aida K, Koishi S, Tawata M et al (1995) Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney. Biochem Biophys Res Commun 214:524–529

    Article  CAS  PubMed  Google Scholar 

  38. Alfadda I, Saleh AMA, Houillier P et al (2014) Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 307:C221–C231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant 11:1762–1768

    Article  CAS  PubMed  Google Scholar 

  40. Almaden Y, Canalejo A, Hernandez A et al (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11:970–976

    Article  CAS  PubMed  Google Scholar 

  41. Centeno PP, Herberger A, Mun HC et al (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nature Commun 10:4693

    Article  Google Scholar 

  42. Nemeth EF, Goodman WG (2016) Calcimimetic and calcilytic drugs: feats, flops, and futures. Calcif Tissue Int 98:341–358

    Article  CAS  PubMed  Google Scholar 

  43. Valle C, Rodriguez M, Santamaría R et al (2008) Cinacalcet reduces the set point of the PTH-calcium curve. J Am Soc Nephrol 19:2430–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moe SM, Cunningham J, Bommer J et al (2005) Long-term treatment of secondary hyperparathyroidism with the calcimimetic cinacalcet HCl. Nephrol Dial Transplant 20:2186–2193

    Article  CAS  PubMed  Google Scholar 

  45. Walter S, Baruch A, Dong J et al (2013) Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther 346:229–240

    Article  CAS  PubMed  Google Scholar 

  46. Block GA, Bushinsky DA, Cunningham J et al (2017) Effect of etelcalcetide vs placebo on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: two randomized clinical trials. JAMA 317:146–155

    Article  CAS  PubMed  Google Scholar 

  47. Block GA, Bushinsky DA, Cheng S et al (2017) Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA 317:156–164

    Article  CAS  PubMed  Google Scholar 

  48. Gowen M, Stroup GB, Dodds RA et al (2000) Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 105:1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silve BC, Bilezikian JP (2015) Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 22:41–50

    Article  Google Scholar 

  50. Riccardi D (2012) Antagonizing the calcium-sensing receptor: towards new bone anabolics? Curr Mol Pharmacol 5:182–188

    Article  CAS  PubMed  Google Scholar 

  51. Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2011) The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab 96:2441–2449

    Article  CAS  PubMed  Google Scholar 

  52. Al-Dujaili SA, Koh AJ, Dang M et al (2016) Calcium sensing receptor function supports osteoblast survival and acts as a co-factor in PTH anabolic actions in bone. J Cell Biochem 117:1556–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Díaz-Tocados JM, Rodríguez-Ortiz ME, Almadén Y et al (2019) Calcimimetics maintain bone turnover in uremic rats despite the concomitant decrease in parathyroid hormone concentration. Kidney Int 95:1064–1078

    Article  PubMed  Google Scholar 

  54. Malluche HH, Monier-Faugere MC, Wang G et al (2008) An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin Nephrol 69:269–278

    Article  CAS  PubMed  Google Scholar 

  55. Behets GJ, Spasovski G, Sterling LR et al (2015) Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 87:846–856

    Article  CAS  PubMed  Google Scholar 

  56. Shigematsu T, Fukagawa M, Yokoyama K et al (2018) Long-term effects of etelcalcetide as intravenous calcimimetic therapy in hemodialysis patients with secondary hyperparathyroidism. Clin Exp Nephrol 22:426–436

    Article  CAS  PubMed  Google Scholar 

  57. Cunningham J, Danese M, Olson K et al (2005) Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int 68:1793–1800

    Article  CAS  PubMed  Google Scholar 

  58. Moe SM, Abdalla S, Chertow GM et al (2015) Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol 26:1466–1475

    Article  CAS  PubMed  Google Scholar 

  59. Li X, Yu L, Asuncion F et al (2017) Etelcalcetide (AMG 416), a peptide agonist of the calcium-sensing receptor, preserved cortical bone structure and bone strength in subtotal nephrectomized rats with established secondary hyperparathyroidism. Bone 105:163–172

    Article  CAS  PubMed  Google Scholar 

  60. Fukagawa M, Shimazaki R, Akizawa T (2018) Head-to-head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int 94:818–825

    Article  CAS  PubMed  Google Scholar 

  61. Kawata T, Tokunaga S, Murai M et al (2018) A novel calcimimetic agent, evocalcet (MT-4580/KHK7580), suppresses the parathyroid cell function with little effect on the gastrointestinal tract or CYP isozymes in vivo and in vitro. PLoS ONE 13:e0195316

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wetmore JB, Liu J, Do TP et al (2016) Changes in secondary hyperparathyroidism-related biochemical parameters and medication use following parathyroidectomy. Nephrol Dial Transplant 31:103–111

    Article  CAS  PubMed  Google Scholar 

  63. Takahashi H, Komaba H, Takahashi Y et al (2014) Impact of parathyroidectomy on serum FGF23 and soluble Klotho in hemodialysis patients with severe secondary hyperparathyroidism. J Clin Endocrinol Metab 99:E652–E658

    Article  CAS  PubMed  Google Scholar 

  64. Yajima A, Ogawa Y, Takahashi HE et al (2003) Changes of bone remodeling immediately after parathyroidectomy for secondary hyperparathyroidism. Am J Kidney Dis 42:729–738

    Article  PubMed  Google Scholar 

  65. Yajima A, Inaba M, Tominaga Y et al (2008) Bone formation by minimodeling is more active than remodeling after parathyroidectomy. Kidney Int 74:775–781

    Article  PubMed  Google Scholar 

  66. Abdelhadi M, Nordenström J (1998) Bone mineral recovery after parathyroidectomy in patients with primary and renal hyperparathyroidism. J Clin Endocrinol Metab 83:3845–3851

    Article  CAS  PubMed  Google Scholar 

  67. Chou FF, Chen JB, Lee CH et al (2001) Parathyroidectomy can improve bone mineral density in patients with symptomatic secondary hyperparathyroidism. Arch Surg 136:1064–1068

    Article  CAS  PubMed  Google Scholar 

  68. Iimori S, Mori Y, Akita W et al (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients–a single-center cohort study. Nephrol Dial Transplant 27:345–351

    Article  CAS  PubMed  Google Scholar 

  69. Nakagawa Y, Komaba H, Hamano N et al (2020) Metacarpal bone mineral density by radiographic absorptiometry predicts fracture risk in patients undergoing maintenance hemodialysis. Kidney Int 98:970–978

    Article  CAS  PubMed  Google Scholar 

  70. Tentori F, McCullough K, Kilpatrick RD et al (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85:166–173

    Article  PubMed  Google Scholar 

  71. Rudser KD, de Boer IH, Dooley A et al (2007) Fracture risk after parathyroidectomy among chronic hemodialysis patients. J Am Soc Nephrol 18:2401–2407

    Article  PubMed  Google Scholar 

  72. Komaba H, Nakamura M, Fukagawa M (2017) Resurgence of parathyroidectomy: evidence and outcomes. Curr Opin Nephrol Hypertens 26:243–249

    Article  PubMed  Google Scholar 

  73. Floege J, Kim J, Ireland E et al (2011) Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant 26:1948–1955

    Article  CAS  PubMed  Google Scholar 

  74. Komaba H, Taniguchi M, Wada A et al (2015) Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int 88:350–359

    Article  PubMed  Google Scholar 

  75. Drüeke TB, Massy ZA (2016) Changing bone patterns with progression of chronic kidney disease. Kidney Int 89:289–302

    Article  PubMed  Google Scholar 

  76. Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome. Possible aluminum intoxication. N Engl J Med 294:184–188

    Article  CAS  PubMed  Google Scholar 

  77. Wills MR, Savory J (1983) Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet 2:29–34

    Article  CAS  PubMed  Google Scholar 

  78. Ferreira A, Frazão JM, Monier-Faugere MC et al (2008) Effects of sevelamer hydrochloride and calcium carbonate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol 19:405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rudnicki M, Hyldstrup L, Petersen LJ et al (1994) Effect of oral calcium on noninvasive indices of bone formation and bone mass in hemodialysis patients: a randomized double-blind placebo-controlled study. Miner Electrolyte Metab 20:130–134

    CAS  PubMed  Google Scholar 

  80. Block GA, Wheeler DC, Persky MS et al (2012) Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 23:1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qunibi W, Moustafa M, Muenz LR et al (2008) A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am J Kidney Dis 51:952–965

    Article  CAS  PubMed  Google Scholar 

  82. Barreto DV, Barreto Fde C, de Carvalho AB et al (2008) Phosphate binder impact on bone remodeling and coronary calcification: results from the BRiC study. Nephron Clin Pract 110:c273–c283

    Article  CAS  PubMed  Google Scholar 

  83. D’Haese PC, Spasovski GB, Sikole A et al (2003) A multicenter study on the effects of lanthanum carbonate (Fosrenol) and calcium carbonate on renal bone disease in dialysis patients. Kidney Int Suppl 85:S73–S78

    Article  CAS  Google Scholar 

  84. Malluche HH, Siami GA, Swanepoel C et al (2008) Improvements in renal osteodystrophy in patients treated with lanthanum carbonate for two years. Clin Nephrol 70:284–295

    CAS  PubMed  Google Scholar 

  85. Spasovski GB, Sikole A, Gelev S et al (2006) Evolution of bone and plasma concentration of lanthanum in dialysis patients before, during 1 year of treatment with lanthanum carbonate and after 2 years of follow-up. Nephrol Dial Transplant 21:2217–2224

    Article  CAS  PubMed  Google Scholar 

  86. Shigematsu T, Tokumoto A, Nakaoka A et al (2011) Effect of lanthanum carbonate treatment on bone in Japanese dialysis patients with hyperphosphatemia. Ther Apher Dial 15:76–184

    Article  Google Scholar 

  87. Hutchison A, Whelton A, Thadhani R et al (2018) Long-term mortality and bone safety in patients with end-stage renal disease receiving lanthanum carbonate. Nephron 140:265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Fukagawa.

Ethics declarations

Conflict of Interest

Hirotaka Komaba has received honoraria, consulting fees, and/or grant support from Bayer Yakuhin, Chugai Pharmaceutical, Japan Tobacco, Kyowa Kirin, Novartis, and Ono Pharmaceutical. Markus Ketteler has received honoraria for consulting and lecture fees from Amgen, Bayer, Kyowa Kirin, Medice, Ono Pharmaceutical, Sanofi, and Vifor Pharma. John Cunningham has receive honoraria, consulting fees, and/or grant support from Vifor Pharma, Amgen, Merck, and Opko Pharma. Masafumi Fukagawa has received honoraria, consulting fees, and/or grant support from Bayer Yakuhin, Fresenius Kabi, Kissei Pharmaceutical, Kyowa Kirin, Ono Pharmaceutical, and Torii Pharmaceutical.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komaba, H., Ketteler, M., Cunningham, J. et al. Old and New Drugs for the Management of Bone Disorders in CKD. Calcif Tissue Int 108, 486–495 (2021). https://doi.org/10.1007/s00223-020-00788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00788-y

Keywords

Navigation