Skip to main content

Advertisement

Log in

Prevalence of Sarcopenia and its Association with Antirheumatic Drugs in Middle-Aged and Older Adults with Rheumatoid Arthritis: A Systematic Review and Meta-analysis

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To examine the prevalence of sarcopenia and its association with antirheumatic drugs in adults with rheumatoid arthritis (RA). This review was registered on PROSPERO and followed PRISMA guidelines. Electronic databases were searched for studies reporting on the prevalence of sarcopenia in adults with RA using any muscle index (muscle mass, strength and/or physical performance) and cutpoints as recommended by established criteria (EWGSOP1/2, AWGS, FNIH, SDOC). The secondary objective was to investigate the relationship between RA, antirheumatic drugs, and sarcopenia. Among 2240 middle-aged and older adults with RA (mean age: 47.7 ± 5.5 to 75.0 ± 6.2 years, 83.8% women), the pooled prevalence of low muscle mass/sarcopenia was 30.2% [95% confidence interval (CI) 24.2–36.2%; 16 studies; I2: 89.2%]. Sub-group analysis showed a non-significant higher prevalence of low muscle mass alone (32.6%, 95% CI 25.0–40.3%; I2: 87.9%) versus consensus definitions of sarcopenia (25.4%, 95% CI 15.4–35.3%; I2: 91.2%, p = 0.255). In adults with RA, corticosteroid use was positively associated with sarcopenia [odds ratio (OR) 1.46, 95% CI 0.94–2.29, 7 studies; I2: 47.5%] while conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) was inversely associated (OR 0.70, 95% CI 0.52–0.94; 6 studies: I2: 0.00%) with this muscle disease. No association was found for biological/targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) (OR 0.83, 95% CI 0.54–1.30; 6 studies: I2: 47.6%). Sarcopenia is a common comorbidity of RA, and as such, clinicians should screen for this muscle disease in adults with RA. Further longitudinal studies are needed to understand the role of antirheumatic drugs (particularly type, dosing, and duration) in the development of sarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393:2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9

    Article  PubMed  Google Scholar 

  2. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  3. Mayhew AJ, Amog K, Phillips S, Parise G, McNicholas PD, de Souza RJ, Thabane L et al (2019) The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing 48:48–56. https://doi.org/10.1093/ageing/afy106

    Article  CAS  PubMed  Google Scholar 

  4. Tuttle CSL, Thang LAN, Maier AB (2020) Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis. Ageing Res Rev. https://doi.org/10.1016/j.arr.2020.101185

    Article  PubMed  Google Scholar 

  5. Wåhlin-Larsson B, Carnac G, Kadi F (2014) The influence of systemic inflammation on skeletal muscle in physically active elderly women. Age (Dordr) 36:9718. https://doi.org/10.1007/s11357-014-9718-0

    Article  CAS  Google Scholar 

  6. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of Interleukin-6 and tumor necrosis factor-with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A 57:M326–M332. https://doi.org/10.1093/gerona/57.5.m326

    Article  Google Scholar 

  7. Bano G, Trevisan C, Carraro S, Solmi M, Luchini C, Stubbs B, Manzato E, Sergi G, Veronese N (2017) Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96:10–15. https://doi.org/10.1016/j.maturitas.2016.11.006

    Article  PubMed  Google Scholar 

  8. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

    Article  CAS  PubMed  Google Scholar 

  9. Littlejohn EA, Monrad SU (2018) Early diagnosis and treatment of rheumatoid arthritis. Prim Care 45:237–255. https://doi.org/10.1016/j.pop.2018.02.010

    Article  PubMed  Google Scholar 

  10. Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE (2010) Is the incidence of rheumatoid arthritis rising?: results from Olmsted county, Minnesota, 1955–2007. Arthritis Rheum 62:1576–1582. https://doi.org/10.1002/art.27425

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kramer HR, Fontaine KR, Bathon JM, Giles JT (2012) Muscle density in rheumatoid arthritis: associations with disease features and functional outcomes. Arthritis Rheum 64:2438–2450. https://doi.org/10.1002/art.34464

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baker JF, Von Feldt J, Mostoufi-Moab S, Noaiseh G, Taratuta E, Kim W, Leonard MB (2014) Deficits in muscle mass, muscle density, and modified associations with fat in rheumatoid arthritis. Arthritis Care Res 66:1612–1618. https://doi.org/10.1002/acr.22328

    Article  Google Scholar 

  13. Biolo G, Cederholm T, Muscaritoli M (2014) Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr 33:737–748. https://doi.org/10.1016/j.clnu.2014.03.007

    Article  PubMed  Google Scholar 

  14. Sokka T, Häkkinen A, Kautiainen H, Maillefert JF, Toloza S, Mørk Hansen T, Calvo-Alen J et al (2008) Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum 59:42–50. https://doi.org/10.1002/art.23255

    Article  PubMed  Google Scholar 

  15. Klein GL (2015) The effect of glucocorticoids on bone and muscle. Osteoporos Sarcopenia 1:39–45. https://doi.org/10.1016/j.afos.2015.07.008

    Article  PubMed  Google Scholar 

  16. Tournadre A, Pereira B, Dutheil F, Giraud C, Courteix D, Sapin V, Frayssac T et al (2017) Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J Cachexia Sarcopenia Muscle 8:639–646. https://doi.org/10.1002/jcsm.12189

    Article  PubMed  PubMed Central  Google Scholar 

  17. Subramaniam K, Fallon K, Ruut T, Lane D, McKay R, Shadbolt B, Ang S et al (2015) Infliximab reverses inflammatory muscle wasting (sarcopenia) in Crohn’s disease. Aliment Pharmacol Ther 41:419–428. https://doi.org/10.1002/jcsm.12189

    Article  CAS  PubMed  Google Scholar 

  18. Li TH, Chang YS, Liu CW, Su CF, Tsai HC, Tsao YP, Liao HT et al (2020) The prevalence and risk factors of sarcopenia in rheumatoid arthritis patients: a systematic review and meta-regression analysis. Semin Arthritis Rheum 51:236–245. https://doi.org/10.1016/j.semarthrit.2020.10.002

    Article  PubMed  Google Scholar 

  19. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY et al (2014) Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc 15:95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  21. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC et al (2020) Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21:300–7.e2. https://doi.org/10.1016/j.jamda.2019.12.012

    Article  PubMed  Google Scholar 

  22. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A 69:547–558. https://doi.org/10.1093/gerona/glu010

    Article  Google Scholar 

  23. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, Magaziner JM et al (2020) Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc 68:1410–1418. https://doi.org/10.1111/jgs.16372

    Article  PubMed  Google Scholar 

  24. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349:g7647. https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  25. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P (2019) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. The Ottawa hospital research institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 25 Sept 2020

  26. Ryan R, Hill S (2016) How to GRADE the quality of the evidence. La Trobe University, Melbourne. http://cccrg.cochrane.org/author-resources. Accessed 1 Oct 2020

  27. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872. https://doi.org/10.1002/(sici)1097-0258(19980430)17:8%3c857::aid-sim777%3e3.0.co;2-e

    Article  CAS  PubMed  Google Scholar 

  28. Higgins JP, Thompson SG, Deeks JJ, Altman D (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baker JF, Long J, Ibrahim S, Leonard MB, Katz P (2015) Are men at greater risk of lean mass deficits in rheumatoid arthritis? Arthritis Care Res 67:112–119. https://doi.org/10.1002/acr.22396

    Article  Google Scholar 

  30. Alkan Melikoğlu M (2017) Presarcopenia and its impact on disability in female patients with rheumatoid arthritis. Arch Rheumatol 32:53–59. https://doi.org/10.5606/ArchRheumatol.2017.6078

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ngeuleu A, Allali F, Medrare L, Madhi A, Rkain H, Hajjaj-Hassouni N (2017) Sarcopenia in rheumatoid arthritis: prevalence, influence of disease activity and associated factors. Rheumatol Int 37:1015–1020. https://doi.org/10.1007/s00296-017-3665-x

    Article  CAS  PubMed  Google Scholar 

  32. Delgado-Frías E, González-Gay MA, Muñiz-Montes JR, Gómez Rodríguez-Bethencourt MA, González-Díaz A, Díaz-González F, Ferraz-Amaro I (2015) Relationship of abdominal adiposity and body composition with endothelial dysfunction in patients with rheumatoid arthritis. Clin Exp Rheumatol 33:516–523

    PubMed  Google Scholar 

  33. Doğan SC, Hizmetli S, Hayta E, Kaptanoğlu E, Erselcan T, Güler E (2015) Sarcopenia in women with rheumatoid arthritis. Eur J Rheumatol 2:57–61. https://doi.org/10.5152/eurjrheum.2015.0038

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giles JT, Ling SM, Ferrucci L, Bartlett SJ, Andersen RE, Towns M, Muller D, Fontaine KR, Bathon JM (2008) Abnormal body composition phenotypes in older rheumatoid arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Rheum 59:807–815. https://doi.org/10.1002/art.23719

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reina D, Gómez-Vaquero C, Díaz-Torné C, Solé JMN (2019) Assessment of nutritional status by dual X-ray absorptiometry in women with rheumatoid arthritis: a case-control study. Medicine (Baltimore) 98:e14361. https://doi.org/10.1097/MD.0000000000014361

    Article  CAS  Google Scholar 

  36. Koo BS, Yoon B-H (2020) Characteristics of appendicular tissue components in patients with rheumatoid arthritis. J Bone Metab 27:35–42. https://doi.org/10.11005/jbm.2020.27.1.35

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin JZ, Liang JJ, Ma JD, Li QH, Mo YQ, Cheng WM, He XL et al (2019) Myopenia is associated with joint damage in rheumatoid arthritis: a cross-sectional study. J Cachexia Sarcopenia Muscle 10:355–367. https://doi.org/10.1002/jcsm.12381

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vlietstra L, Stebbings S, Meredith-Jones K, Abbott JH, Treharne GJ, Waters DL (2019) Sarcopenia in osteoarthritis and rheumatoid arthritis: the association with self-reported fatigue, physical function and obesity. PLoS ONE 14:e0217462. https://doi.org/10.1371/journal.pone.0217462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barone M, Viggiani MT, Anelli MG, Fanizzi R, Lorusso O, Lopalco G, Cantarini L et al (2018) Sarcopenia in patients with rheumatic diseases: prevalence and associated risk factors. J Clin Med 7:504. https://doi.org/10.3390/jcm7120504

    Article  PubMed Central  Google Scholar 

  40. Mochizuki T, Yano K, Ikari K, Okazaki K (2020) Sarcopenia in Japanese younger patients with rheumatoid arthritis: a cross-sectional study. Mod Rheumatol. https://doi.org/10.1080/14397595.2020.1740411

    Article  PubMed  Google Scholar 

  41. Torii M, Hashimoto M, Hanai A, Fujii T, Furu M, Ito H, Uozumi R et al (2019) Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod Rheumatol 29:589–595. https://doi.org/10.1080/14397595.2020.1740411

    Article  PubMed  Google Scholar 

  42. Tada M, Yamada Y, Mandai K, Hidaka N (2018) Matrix metalloprotease 3 is associated with sarcopenia in rheumatoid arthritis—results from the CHIKARA study. Int J Rheum Dis 21:1962–1969. https://doi.org/10.1111/1756-185X.13335

    Article  CAS  PubMed  Google Scholar 

  43. Mochizuki T, Yano K, Ikari K, Okazaki K (2019) Sarcopenia-associated factors in Japanese patients with rheumatoid arthritis: a cross-sectional study. Geriatr Gerontol Int 19:907–912. https://doi.org/10.1111/ggi.13747

    Article  PubMed  Google Scholar 

  44. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763. https://doi.org/10.1093/oxfordjournals.aje.a009520

    Article  CAS  PubMed  Google Scholar 

  45. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB et al (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51:1602–1609. https://doi.org/10.1046/j.1532-5415.2003.51534.x

    Article  PubMed  Google Scholar 

  46. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159:413–421. https://doi.org/10.1093/aje/kwh058

    Article  PubMed  Google Scholar 

  47. Pacifico J, Geerlings MAJ, Reijnierse EM, Phassouliotis C, Lim WK, Maier AB (2020) Prevalence of sarcopenia as a comorbid disease: a systematic review and meta-analysis. Exp Gerontol 131:110801. https://doi.org/10.1016/j.exger.2019.110801

    Article  PubMed  Google Scholar 

  48. Sengul I, Akcay-Yalbuzdag S, Ince B, Goksel-Karatepe A, Kaya T (2015) Comparison of the DAS28-CRP and DAS28-ESR in patients with rheumatoid arthritis. Int J Rheum Dis 18:640–645. https://doi.org/10.1111/1756-185X.12695

    Article  CAS  PubMed  Google Scholar 

  49. Greenmyer JR, Stacy JM, Sahmoun AE, Beal JR, Diri E (2020) DAS28-CRP cutoffs for high disease activity and remission are lower than DAS28-ESR in rheumatoid arthritis. ACR Open Rheumatol 2:507–511. https://doi.org/10.1002/acr2.11171

    Article  PubMed  PubMed Central  Google Scholar 

  50. Horsten NC, Ursum J, Roorda LD, van Schaardenburg D, Dekker J, Hoeksma AF (2010) Prevalence of hand symptoms, impairments and activity limitations in rheumatoid arthritis in relation to disease duration. J Rehabil Med 42:916–921. https://doi.org/10.2340/16501977-0619

    Article  PubMed  Google Scholar 

  51. Wang R, Jiao H, Zhao J, Wang X, Lin H (2016) Glucocorticoids enhance muscle proteolysis through a myostatin-dependent pathway at the early stage. PLoS ONE 11:e0156225. https://doi.org/10.1371/journal.pone.0156225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kirk B, Feehan J, Lombardi G, Duque G (2020) Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 18:388–400. https://doi.org/10.1007/s11914-020-00599-y

    Article  PubMed  Google Scholar 

  53. Benjamin O, Bansal P, Goyal A, Lappin SL (2020) Disease modifying anti-rheumatic drugs (DMARD). StatPearls [Internet]. StatPearls Publishing, Treasure Island

    Google Scholar 

  54. Friedman B, Cronstein B (2019) Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 86:301–307. https://doi.org/10.1016/j.jbspin.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  55. Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, McInnes IB et al (2020) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 79:685–699. https://doi.org/10.1136/annrheumdis-2019-216655

    Article  CAS  PubMed  Google Scholar 

  56. Kirk B, Zanker J, Duque G (2020) Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle 11:609–618. https://doi.org/10.1002/jcsm.12567

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lane NE (2019) Glucocorticoid-induced osteoporosis: new insights into the pathophysiology and treatments. Curr Osteoporos Rep 17:1–7. https://doi.org/10.1007/s11914-019-00498-x

    Article  PubMed  PubMed Central  Google Scholar 

  58. Brance ML, Pons-Estel BA, Quagliato NJ, Jorfen M, Berbotto G, Cortese N, Raggio JC et al (2021) Trabecular and cortical bone involvement in rheumatoid arthritis by DXA and DXA-based 3D modelling. Osteoporos Int 32:705–714. https://doi.org/10.1007/s00198-020-05641-4

    Article  CAS  PubMed  Google Scholar 

  59. Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J, Bauer JM et al (2018) International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. J Nutr Health Aging 22:1148–1161. https://doi.org/10.1007/s12603-018-1139-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Evelyn Hutcheon (Clinical Services Librarian, Western Health Library Service, Western Health, Victoria, Australia), who assisted greatly with the construction of the search strategy.

Funding

No specific funding was received from any bodies in the public, commercial, or not-for-profit sectors to carry out the work described in this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published.

Corresponding author

Correspondence to Gustavo Duque.

Ethics declarations

Conflict of interest

Thang Dao, Ben Kirk, Steven Phu, Sara Vogrin, and Gustavo Duque declare that they have no conflict of interest.

Ethical Approval

Ethical approval was not applicable for this systematic review and meta-analysis.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1927 KB)

Supplementary file2 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, T., Kirk, B., Phu, S. et al. Prevalence of Sarcopenia and its Association with Antirheumatic Drugs in Middle-Aged and Older Adults with Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Calcif Tissue Int 109, 475–489 (2021). https://doi.org/10.1007/s00223-021-00873-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00873-w

Keywords

Navigation