Skip to main content
Log in

Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Nucleotide variation in cytochrome c oxidase subunit I (COI) was used to examine population structure in three invasive bryozoans: Bugula neritina (Linnaeus, 1758), Watersipora subtorquata (d’Orbigny, 1852), and W. arcuata (Banta, 1969). These species are found on ship hulls and have a short (≤2 days) larval phase. Samples were collected from 1998–2001 at multiple sites in Australia, and in Hong Kong, New Zealand, Hawaii, California, Curaçao, and England. B. neritina is known to include three cryptic species, including species Type S (Davidson and Haygood in Biol Bull 196:273–280, 1999) which occurs on the east and west coasts of the USA. One haplotype recorded previously in the USA, S1, was found to be widespread, occurring throughout Australia and in Hong Kong, Curaçao, Hawaii, and England. W. subtorquata, a Caribbean–Atlantic species which has invaded southern Australia, New Zealand, and California, had low nucleotide diversity in these areas (π=0.0016±0.0014), consisting of three haplotypes connected by one or two nucleotide mutations. W. arcuata, an Eastern-Pacific native, had comparatively high diversity (π=0.0221±0.0115) in introduced populations from Australia and Hawaii. In each species, identical haplotypes were identified on separate coastlines providing evidence of widespread, rather than genetically independent, introductions. The major contrast in nucleotide diversity suggests that different propagule-source models explain introductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen FE (1953) Distribution of marine invertebrates by ships. Aust J Mar Freshw Res 4:303–316

    Article  Google Scholar 

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, London

    Google Scholar 

  • Bandelt H-J, Macaulay V, Richards M (2000) Median networks: speedy construction and greedy reduction, one simulation and two case studies from human mtDNA. Mol Phylogenet Evol 16:8–28

    Article  CAS  PubMed  Google Scholar 

  • Banta WC (1969a) Watersipora arcuata, a new species in the subovoidea-cucullata-nigra complex (Bryozoa, Cheilstomata). Bull South Calif Acad Sci 68:96–102

    Google Scholar 

  • Banta WC (1969b) The recent introduction of Watersipora arcuata Banta (Bryozoa, Cheilostomata) as a fouling pest in Southern California. Bull South Calif Acad Sci 68:248–251

    Google Scholar 

  • Barnes D (2002) Biodiversity: invasions by marine life on plastic debris. Nature 416:808–809

    Article  CAS  PubMed  Google Scholar 

  • Bastrop R, Jürss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15:97–103

    Article  CAS  PubMed  Google Scholar 

  • Carlton JT (1996a) Pattern, process and prediction in marine invasion ecology. Biol Cons 78:97–106

    Article  Google Scholar 

  • Carlton JT (1996b) Biological invasions of cryptic species. Ecology 77:1653–1655

    Article  Google Scholar 

  • Carlton JT, Hodder J (1995) Biogeography and dispersal of coastal marine organisms: experimental studies on a replica of a 16th-century sailing vessel. Mar Biol 121:721–730

    Article  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol 22:252–271

    Article  CAS  PubMed  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–557

    Article  CAS  PubMed  Google Scholar 

  • Davidson SK, Haygood MG (1999) Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbour distinct strains of the bacterial symbiont “Candidatus Endobugula sertula”. Biol Bull 196:273–280

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Floerl O, Pool TK, Inglis GJ (2004) Positive interactions between non-indigenous species facilitate transport by human vectors. Ecol Appl 14:1724–1736

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Fu L-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon DP (1989) The marine fauna of New Zealand: bryozoa: gymnolaemata (Cheilostomatida Ascophorina) from the western South Island continental shelf and slope. Mem NZ Oceanogr Inst 97:1–158

    Google Scholar 

  • Gordon DP, Mawatari SH (1992) Atlas of marine-fouling bryozoa of New Zealand ports and harbours. Misc Publ NZ Oceanogr Inst 107:1–52

    Google Scholar 

  • Hebert PD, Cristescu EA (2002) Genetic perspectives on invasions: the case study of the Cladocera. Can J Fish Aquat Sci 59:1229–1234

    Article  CAS  Google Scholar 

  • Hebert PD, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270(Suppl 1):S96–S99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur N, O’Hara TD, Poore GCB, Ross JD, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144: 183–202. DOI: 10.1007/s00227–003–1173-x

    Article  Google Scholar 

  • Hoare K, Goldson AJ, Giannasi N, Hughes RN (2001) Molecular phylogeography of the cosmopolitan bryozoan Celleporella hyalina: cryptic speciation? Mol Phylogenet Evol 18:488–492

    Article  CAS  PubMed  Google Scholar 

  • Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologica 420:63–71

    Article  CAS  Google Scholar 

  • Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128

    Article  Google Scholar 

  • Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 7. Oxford University Press, New York, pp 1–44

  • Keough MJ, Chernoff H (1987) Dispersal and population variation in the bryozoan Bugula neritina. Ecology 68:199–210

    Article  Google Scholar 

  • Keough MJ, Ross J (1999) Introduced fouling species in Port Phillip Bay. In: Hewitt CL, Campbell ML, Thresher RE, Martin RB (eds) Marine biological invasions of Port Phillip Bay Victoria. CSIRO Marine Research, Hobart pp 193–221

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA 2: molecular evolutionary genetics analysis software. Arizona State University, Tempe, Arizona, USA

    Google Scholar 

  • Lynch WF (1947) The behavior and metamorphosis of the larva of Bugula neritina (Linnaeus): experimental modification of the length of the free-swimming period and the responses of the larvae to light and gravity. Biol Bull 92:115–150

    Article  CAS  PubMed  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale MW, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mackie JA (2003) A molecular analysis of bryozoan dispersal. PhD Dissertation, University of Melbourne

  • Mackie JA, Keough MJ, Norman JA, Christidis L (2002) Mitochondrial evidence of geographical isolation within Bugula dentata Lamouroux. In: Wyse Jackson PN, Buttler CJ, Spencer JME (eds) Bryozoan studies 2001, Proceedings of 12th international bryozoology association Conference, Balkema, Lisse, Netherlands, pp 199–206

  • McGovern T, Hellberg ME (2003) Cryptic species, cryptic endosymbionts, and geographic variation in chemical defenses in the bryozoan Bugula neritina. Mol Ecol 12:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger M, Reinhardt F, Streit B (2002) Evidence for cryptic hybridization between different evolutionary lineages of the invasive clam genus Corbicula (Veneroida, Bivalvia). J Evol Biol 15:818–829

    Article  CAS  Google Scholar 

  • Porter JS, Dyrynda PEJ, Ryland JS, Carvahlo GR (2001) Morphological and genetic adaptation to a lagoon environment: a case study in the bryozoan genus Alcyonidium. Mar Biol 139:575–585

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  CAS  PubMed  Google Scholar 

  • Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3:Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ross DJ, Johnson CR, Hewitt CL (2003) Assessing the ecological impacts of an introduced seastar: the importance of multiple methods. Biol Invasions 5:3–21

    Article  Google Scholar 

  • Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proc R Soc Lond Biol 269:1017–1023

    Article  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Syst 31:481–531

    Article  Google Scholar 

  • Ryland JS (1969) A nomenclatural index to “A History of the British marine Polyzoa” by T. Hinks (1880). Bull Br Mus Nat Hist [Zool] 17:207–260

    Google Scholar 

  • Ryland JS (1974) In: Bryozoa in the Great Barrier Reef Province 2nd international coral reef symposium (proceedings). Great Barrier Reef Committee, Brisbane, pp 341–348

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99(4):2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider S, Keuffer J-M, Roessli D, Excoffier L (2000) Arlequin Ver. 2.0: a software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Schwaninger HR (1999) Population structure of the widely-dispersing marine bryozoan Membranipora membranacea (Cheilostomata): implications for population history, biogeography, and taxonomy. Mar Biol 135:411–423. DOI: 10.1007/s002270050642

    Article  Google Scholar 

  • Skerman TM (1960) The recent establishment of the polyzoan Watersipora cucullata (Busk) in Auckland Harbour, New Zealand. NZ J Science 3:615–619

    Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol 12:253–262

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res 58:167–175

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Hudson R (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soule DF, Soule JD (1968) Bryozoan fouling organisms from Oahu, Hawaii, with a new species of Watersipora. Bull South Calif Acad Sci 64:203–218

    Google Scholar 

  • Soule DF, Soule JD (1976) Species groups in Watersiporidae. In: Pouyet S (ed) Proc Third Int Bryozoology Assoc Conf (1973). Documents des Laboratoires de Gèologie de la Faculté des Sciences de Lyon, pp 299–309

  • Soule DF, Soule JD (1985) Effects of oceanographic phenomena such as ‘El Niño’ on the zoogeography and endemism of tropical/subtropical Pacific Watersiporidae. In: Nielson C, Larwood GP (eds) Bryozoa: Ordovician to Recent. Olsen and Olsen, Fredensborg pp 293–300

    Google Scholar 

  • Stevens LM, Gregory MR, Foster BA (1996) Fouling Bryozoa on pelagic and moored plastics from northern New Zealand. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. NIWA, Wellington pp 321–340

    Google Scholar 

  • Swofford DL (2000) PAUP* Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1993) Measurement of DNA polymorphism. In: Takahata N, Clark AG (eds) Mechanisms of molecular evolution. Introduction to molecular palaeopopulation biology. Sinauer Associates, Inc., Tokyo, Sunderland, MA: Japan Scientific Societies Press, pp 37–59

  • Tamura K, Nee S (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Villablanca FX, Roderick GK, Palumbi SR (1998) Invasion genetics of the Mediterranean fruit fly: variation in mutliple nuclear introns. Mol Ecol 7:547–560

    Article  CAS  PubMed  Google Scholar 

  • Wisely B (1958) The settling and some experimental reactions of a bryozoan larva Watersipora cucullata (Busk). Aust J Mar Freshw Res 9:362–371

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Boxshall, P. Dyrynda, D. Gordon, T. Harder, J. Lewis, K. Wasson, and C. Zabin for providing specimens. W. Aguirre, J. Benzie, P. Bock, J. Norman, G. Ruiz, S. Smith, J. True and E. Wildburg provided helpful discussions and advice. Three anonymous reviewers provided helpful comments on the manuscript. This study was funded by a collaborative research grant through Melbourne University and Museum Victoria; J. Mackie was supported by a Melbourne University Research Scholarship and David Hay Award. These experiments comply with current laws of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Mackie.

Additional information

Communicated by J.P. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackie, J.A., Keough, M.J. & Christidis, L. Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata . Marine Biology 149, 285–295 (2006). https://doi.org/10.1007/s00227-005-0196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0196-x

Keywords

Navigation