Skip to main content
Log in

Thermal dependency of burrowing in three species within the bivalve genus Laternula: a latitudinal comparison

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The upper thermal limits for burrowing and survival were compared with micro-habitat temperature for anomalodesmatan clams: Laternula elliptica (Antarctica, 67°S); Laternula recta, (temperate Australia, 38°S) and Laternula truncata (tropical Singapore, 1°N). Lethal limits (LT50) were higher than burrowing limits (BT50) in L. elliptica (7.5–9.0 and 2.2°C) and L. recta (winter, 32.8–36.8 and 31.1–32.8°C) but the same range for L. truncata (33.0–35.0 and 33.4–34.9°C). L. elliptica and L. truncata had a BT50 0.4 and 2.4–3.9°C, respectively, above their maximum experienced temperature. L. recta, which experience solar heating during midday low tides, had a BT50 0.7–2.4°C below and a range for LT50 that spanned their predicted environmental maximum (33.5°C). L. recta showed no seasonal difference in LT50 or BT50. Our single genus comparisons contrast with macrophysiological studies showing that temperate species cope better with elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Alexander R, Stanton R, Dodd J (1993) Influence of sediment grain size on the burrowing of bivalves: correlation with distribution and stratigraphic persistence of selected neogene clams. Palaios 8:289–303

    Article  Google Scholar 

  • Ansell AD, McLachlan A (1980) Upper temperature tolerances of three molluscs from South African Sandy Beaches. J Exp Mar Biol Ecol 48:243–251

    Article  Google Scholar 

  • Ansell AD, Barnett PRO, Bodoy A, Massé H (1980a) Upper temperature tolerances of some European molluscs. I Tellina fibula and T. tenuis. Mar Biol 58:33–39

    Article  Google Scholar 

  • Ansell AD, Barnett PRO, Bodoy A, Massé H (1980b) Upper temperature tolerances of some European molluscs. II Donax vittatus, D. semistriatus and D. trunculus. Mar Biol 58:41–46

    Article  Google Scholar 

  • Ansell AD, Barnett PRO, Bodoy A, Massé H (1981) Upper temperature tolerances of some European molluscs. III Cardium glaucum, C. tuberculatum and C. edule. Mar Biol 65:177–183

    Article  Google Scholar 

  • Barnes DKA, Fuentes V, Clarke A, Schloss IR, Wallace MI (2006) Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep-Sea Res PT II 53:853–865

    Article  Google Scholar 

  • Calosi P, Bilton DT, Spicer JL (2008) Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol Lett 4:99–102

    Article  PubMed  Google Scholar 

  • Chou R, Lee HB (1997) Commercial fish farming in Singapore. Aquac Res 28:767–776

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2008) Macrophysiology for a changing world. Proc Roy Soc B 275:1469–1478

    Article  Google Scholar 

  • Chown SL, Gaston KJ, Robinson D (2004) Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct Ecol 18:159–167

    Article  Google Scholar 

  • Chown SL, Jumbam KR, Sørensen JG, Terblanche JS (2008) Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct Ecol. doi:10.1111/j.1365-2435.2008.01481.x

  • Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Philos T Roy Soc B 338:299–309

    Article  Google Scholar 

  • Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc Roy Soc B 273:2257–2266

    Article  Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Compton TJ, Rijkenberg MJA, Crent J, Piersma T (2007) Thermal tolerance and climate variability: a comparison between bivalves from differing climates. J Exp Mar Biol Ecol 352:200–211

    Article  Google Scholar 

  • Davenport J, Wong TM (1992) Effects of temperature and aerial exposure on three tropical oyster species, Crassostrea belcheri, Crassostrea iredaelei and Saccostrea cucullata. J Therm Biol 17:135–139

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–6672

    Article  PubMed  CAS  Google Scholar 

  • Finke GR, Navarrete SA, Bozinovic F (2007) Tidal regimes of temperate coasts and their influences on aerial exposure for intertidal organisms. Mar Ecol Prog Ser 343:57–62

    Article  Google Scholar 

  • Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in the spider crab, Maja squinado. Am J Physiol 279:R1531–R1538

    CAS  Google Scholar 

  • Gaston KJ (2006) The structure and dynamics of geographic ranges. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Gaston KJ, Chown CL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500

    Article  Google Scholar 

  • Helmuth B, Harley CDG, Halpin PM, O’Donnell M, Hofmann GE, Blanchette CA (2002) Climate change and latitudinal patterns of intertidal thermal stress. Science 298:1015–1017

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Huey RB, Kingsolver JG (1993) Evolution of resistance to high temperature in ectotherms. Am Nat 142:S21–S46

    Article  Google Scholar 

  • McLachlan A, Jaramillo E, Defeo O, Dugan J, de Ruyck A, Coetzee P (1995) Adaptations of bivalves to different beach types. J Exp Mar Biol Ecol 187:147–160

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Article  Google Scholar 

  • Miyazawa K, Lechowicz MJ (2004) Comparative seedling ecology of eight north American spruce (Picea) species in relation to their geographic ranges. Ann Bot-London 94:635–644

    Article  Google Scholar 

  • Morley SA, Peck LS, Tan KS, Martin SM, Pörtner HO (2007) Slowest of the slow: latitudinal insensitivity of burrowing capacity in the bivalve Laternula. Mar Biol 151:1823–1830

    Article  Google Scholar 

  • Morley SA, Hirse T, Pörtner HO, Peck LS (2009) Geographic variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A. doi:10.1016/j.cbpa.2009.02.001

  • Morton B (1976) The structure, mode of operation and variation in form of the shell of the Laternulidae (Bivalvia: Anomalodesmata: Pandoracea). J Mollus Stud 42:261–278

    Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Ant Sci 17:497–507

    Article  Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper E, Crame AJ (eds) Evolutionary Biology of the Bivalvia. Geology Society of London Special Publication 177. Cambridge University Press, Cambridge, pp 441–450

    Google Scholar 

  • Peck LS, Pörtner HO, Hardewig I (2002) Metabolic demand, oxygen supply and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133

    Article  PubMed  Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004a) Extreme sensitivity of biological function to temperature in Antarctic species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Peck LS, Ansell AD, Webb KE, Hepburn L, Burrows MT (2004b) Movements and burrowing activity in the Antarctic bivalve molluscs Laternula elliptica and Yoldia eightsi. Polar Biol 27:267–357

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Peck LS, Morley SA, Pörtner HO, Clark MS (2007) Thermal limits of burrowing capacity are linked to oxygen availability and size in the Antarctic clam Laternula elliptica. Oecologia 154:479–484

    Article  PubMed  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol. doi:10.1111/j.1365-2435.2008.01537.x

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  PubMed  CAS  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  CAS  Google Scholar 

  • Prosser CL (1973) Comparative animal physiology. Saunders, Philadelphia

    Google Scholar 

  • Sabatés A, Martín P, Lloret J, Raya VA (2006) Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Glob Change Biol 12:2209–2219

    Article  Google Scholar 

  • Sagarin RD, Somero GN (2006) Complex patterns of heat-shock protein 70 across the southern biogeographical ranges of the intertidal mussel Mytlius californianus and snail Nucella ostrina. J Biogeogr 33:622–630

    Article  Google Scholar 

  • Sagarin RD, Barry JP, Gilman SE, Charles HB (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490

    Article  Google Scholar 

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living. Integr Comp Biol 42:780–789

    Article  Google Scholar 

  • Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258

    Article  PubMed  CAS  Google Scholar 

  • Sommer A, Pörtner HO (1999) Exposure of Arenicola marina (L.) to extreme temperatures: adaptive flexibility of a boreal and a subpolar population. Mar Ecol Prog Ser 181:215–226

    Article  Google Scholar 

  • Sommer A, Klein B, Pörtner HO (1997) Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina. J Comp Physiol B 167B:25–35

    Article  Google Scholar 

  • Southward AJ, Hawkins SJ, Burrows MT (1995) Seventy years’ observation of the changes in distribution and abundance of zooplankton and intertidal organisms in the western English channel in relation to rising sea temperature. J Therm Biol 20:127–155

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Stillman JH (2002) Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integr Comp Biol 42:790–796

    Article  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    Article  PubMed  CAS  Google Scholar 

  • Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proc Roy Soc B 274:2935–2942

    Article  Google Scholar 

  • Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320:1296–1297

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siquelra M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L (2005) Two dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability. J Exp Biol 208:3133–3143

    Article  PubMed  CAS  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world: assessing the rate of adaptation to climate change. Proc Roy Soc B 275:649–659

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological response to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER, Taylor CR, Bolis L (1998) Principles of animal design: the optimization and symmorphosis debate. Cambridge University Press, Cambridge

    Google Scholar 

  • Widdows J (1976) Physiological adaptation of Mytlius edulis to cyclic temperatures. J Comp Physiol B 105:115–128

    Article  Google Scholar 

  • Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–524

    Article  Google Scholar 

  • Yamahira K, Conover DO (2002) Intra-vs. interspecific latitudinal variation in growth: adaptation to temperature or seasonality? Ecology 83:1252–1262

    Google Scholar 

Download references

Acknowledgments

This research was funded by NERC core funding to the BAS Bioreach/Bioflame program, the Antarctic Funding Initiative (AFI2/34) and A*Star proposal (SERC project no. 0821010024). We thank the Biodiversity Centre and Sungei Buloh Wetland Reserve (National Parks Board Singapore) and Zoology Department, University of Melbourne for facilitating this project. Antarctic scientific diving was supported by the NERC National Scientific Diving Facility. Pete Rothery provided expert statistical advice. The comments of Pete Convey and two anonymous reviewers improved this manuscript. All experiments comply with the current laws of the countries in which they were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Anthony Morley.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morley, S.A., Tan, K.S., Day, R.W. et al. Thermal dependency of burrowing in three species within the bivalve genus Laternula: a latitudinal comparison. Mar Biol 156, 1977–1984 (2009). https://doi.org/10.1007/s00227-009-1228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1228-8

Keywords

Navigation