Skip to main content

Advertisement

Log in

Similar trait structure and vulnerability in pelagic fish faunas on two remote island systems

  • Short notes
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The link between biodiversity and ecosystem functioning has been the topic of considerable research, but it remains unclear how biodiversity decline is compromising ecosystem functionality, particularly in the pelagic realm. Here, we explore how pelagic fish species diversity relates to functional diversity by sampling two locations, which, on the basis of biogeography, environmental conditions and human pressures, were expected to host pronounced differences in species composition and abundances and therefore functionality. Strings of five drifting mid-water Baited Remote Underwater Video Systems were used to survey pelagic vertebrate diversity and abundance in two isolated oceanic island systems, the Malpelo Fauna and Flora Sanctuary—a large, 25-year-old marine protected area—and an unprotected area in Cape Verde. Functional diversity, which offers insight into a community’s resilience against disturbance, was analysed using six key functional traits of marine fishes. Abundance was recorded as MaxN, the maximum number of individuals of a given species in a single frame during the 2-h deployment time. Cape Verde showed high overall abundance (Total MaxN 873) and low biomass (3559 kg), with a predominance of smaller fishes. Malpelo showed high biomass (7839 kg) but lower abundance (Total MaxN 465), with a predominance of large species. Species and functional diversity were marginally different between locations. Multivariate analysis of species relative abundances showed significant divergence between locations, although community functional traits overlapped strongly, suggesting that both communities share a similar structure and vulnerability. The existence of a common functional ‘backbone’ in diverging species communities across the oceans, under different productivity regimes, and under different protection levels, suggests that although pelagic communities may differ considerably in terms of species composition, this does not translate into a differing functional structure and resilience potential. Whether this vulnerability is a common feature of pelagic communities and how this contrasts with benthic systems warrants further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Code availability

All code is referenced in the text.

References

  • Bessudo S, Soler GA, Klimley AP, Ketchum JT, Hearn A, Arauz R (2011) Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environ Biol Fishes 91:165–176

    Article  Google Scholar 

  • Bouchet PJ, Meeuwig JJ (2015) Drifting baited stereo-videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere 6:137

    Article  Google Scholar 

  • Bouchet PJ et al (2018) Marine sampling field manual for pelagic stereo-BRUVS (Baited Remote Underwater Videos). In: Przeslawski R, Foster S (eds) Field manuals for marine science sampling to monitor australian waters. National Environmental Science Programme (NESP), pp 105–132

    Google Scholar 

  • Bouchet PJ, Letessier TB, Caley JM, Nichol SL, Hemmi JM, Meeuwig JJ (2020) Submerged carbonate banks aggregate pelagic megafauna in offshore tropical Australia. Front Mar Sci 7:1–17

    Article  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ et al (2018) Declining oxygen in the global ocean and coastal waters. Science. https://doi.org/10.1126/science.aam7240

    Article  PubMed  Google Scholar 

  • Briscoe DK et al (2016) Are we missing important areas in pelagic marine conservation? Redefining conservation hotspots in the ocean. Endanger Species Res 29:229–237

    Article  Google Scholar 

  • Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, Le Pape O (2010) Global marine primary production constrains fisheries catches. Ecol Lett 13(4):495–505

    Article  Google Scholar 

  • Cinner JE, Huchery C, MacNeil MA, Graham NAJ, McClanahan TR, Maina J et al (2016) Bright spots among the world’s coral reefs. Nature 535:416–419. https://doi.org/10.1038/nature18607

    Article  CAS  PubMed  Google Scholar 

  • Collette B, Acero A, Amorim AF, Boustany A, Canales Ramirez C, Cardenas G, Carpenter KE, de Oliveira Leite Jr N, Di Natale A, Die D, Fox W, Fredou FL, Graves J, Guzman-Mora A, Viera Hazin FH, Hinton M, Juan Jorda M, Minte Vera C, Miyabe N, Montano Cruz R, Nelson R, Oxenford H, Restrepo V, Salas E, Schaefer K, Schratwieser J, Serra R, Sun C, Teixeira Lessa RP, Pires Ferreira Travassos PE, Uozumi Y, Yanez E (2011) Istiophorus platypterus. The IUCN Red List of Threatened Species 2011: e.T170338A6754507. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T170338A6754507.en. Downloaded on 06 November 2021

  • Collette BB, Boustany A, Fox W, Graves J, Juan Jorda M, Restrepo V (2021) Thunnus albacares. The IUCN Red List of Threatened Species 2021: e.T21857A46624561. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T21857A46624561.en. Downloaded on 06 November 2021

  • Duffy JE, Stachowicz JJ (2006) Why biodiversity is important to oceanography: potential roles of genetic species and trophic diversity in pelagic ecosystem processes. Mar Ecol Prog Ser 311:179–189. https://doi.org/10.3354/meps311179

    Article  Google Scholar 

  • Froese R, Pauly D (2019) FishBase. www.fishbase.org (Accessed 2 Feb 2019)

  • Heupel MR, Knip DM, Simpfendorfer CA, Dulvy NK (2014) Sizing up the ecological role of sharks as predators. Mar Ecol Prog Ser 495:291–298

    Article  Google Scholar 

  • Hosegood PJ, Nimmo-Smith WAM, Proud R, Adams K, Brierley AS (2019) Internal lee waves and baroclinic bores over a tropical seamount shark “hot-spot.” Prog Oceanogr 172:34–50

    Article  Google Scholar 

  • Humann P, DeLoach N (2004) Reef fish identification: Baja to Panama. New World Publications, Jacksonville

    Google Scholar 

  • Humann P, DeLoach N (2014) Reef fish identification: Florida, Caribbean. New World Publications, Jacksonville

    Google Scholar 

  • Kulbicki M, Parravicini V, Bellwood DR, Arias-Gonzàlez E, Chabanet P, Floeter SR et al (2013) Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8(12):e81847. https://doi.org/10.1371/journal.pone.0081847.s002

    Article  PubMed  PubMed Central  Google Scholar 

  • Letessier TB, Bouchet P, Meeuwig JJ (2017) Sampling mobile oceanic fishes and sharks: implications for fisheries and conservation planning. Biol Rev 92(2):627–646

    Article  Google Scholar 

  • Letessier TB, Mouillot D, Bouchet PJ, Vigliola L, Fernandes MC, Thompson C et al (2019) Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol 17(8):e3000366

    Article  CAS  Google Scholar 

  • Magneville C, Loiseau N, Albouy C, Casajus N, Claverie T, Escalas A, Leprieur F, Maire E, Mouillot D, Villéger S (2021) mFD: a computation of functional spaces and functional indices. R package version 1.0.0. https://cran.r-project.org/web/packages/mFD/index.html

  • Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob Ecol Biogeogr 24:728–740

    Article  Google Scholar 

  • Mbaru EK, Graham NAJ, McClanahan TR, Cinner JE (2020) Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J Appl Ecol 57(2):241–252. https://doi.org/10.1111/1365-2664.13547

    Article  Google Scholar 

  • McLean M, Auber A, Graham NAJ, Houk P, Villéger S, Violle C, Thuiller W, Wilson SK, Mouillot D (2019a) Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob Chang Biol 25:3424–3437

    Article  Google Scholar 

  • McLean M, Auber A, Graham NAJ, Houk P, Villéger S, Violle C et al (2019b) Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob Change Biol 25(10):3424–3437

    Article  Google Scholar 

  • McLean M, Stuart-Smith RD, Villéger S, Auber A, Edgar GJ, MacNeil MA et al (2021) Trait similarity in reef fish faunas across the world’s oceans oceans. Proc Nat Acad Sci 118(12):e2012318118

    Article  CAS  Google Scholar 

  • Medina A, Gomes I, Araujo S, Lima L, Monteiro R (2015) Fifth national report on the status of biodiversity in Cabo Verde. Convention on Biological Diversity, Montreal

    Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  Google Scholar 

  • Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-Gonzalez JE, Bender M et al (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci 111(38):13757–13762. https://doi.org/10.1073/pnas.1317625111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuswanger JR, Wipfli MS, Rosenberger AE, Hughes NF (2016) Measuring fish and their physical habitats: versatile 2D and 3D video techniques with user-friendly software. Can J Fish Aquat Sci 73:1861–1873

    Article  Google Scholar 

  • Pacoureau N, Rigby CL, Kyne PM, Sherley RB, Winker H, Carlson JK et al (2021) Half a century of global decline in oceanic sharks and rays. Nature 589:1–21

    Article  Google Scholar 

  • Pons M, Melnychuk MC, Hilborn R (2018) Management effectiveness of large pelagic fisheries in the high seas. Fish Fish 19(2):260–270

    Article  Google Scholar 

  • Priede IG, Bagley PM, Smith A, Creasey S, Merrett NR (1994) Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: observations by baited camera, trap and trawl. J Mar Biol Assoc UK 74(03):481. https://doi.org/10.1017/S0025315400047615

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rigby CL, Sherman CS, Chin A, Simpfendorfer C (2017) Carcharhinus falciformis. The IUCN Red List of Threatened Species 2017: e.T39370A117721799. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T39370A117721799.en

  • Rigby CL, Dulvy NK, Barreto R, Carlson J, Fernando D, Fordham S, Francis MP, Herman K, Jabado RW, Liu KM, Marshall A, Pacoureau N, Romanov E, Sherley RB, Winker, H (2019) Sphyrna lewiniThe IUCN Red List of Threatened Species 2019: e.T39385A2918526. Downloaded on 01 November 2021

  • Sala E, Mayorga J, Bradley D, Cabral RB, Atwood TB, Auber A et al (2021) Protecting the global ocean for biodiversity, food and climate. Nature 592:1–15

    Article  Google Scholar 

  • Santos IT, Monteiro CA, Harper S, Zylich K, Zeller D, Belhabib D (2013) Reconstruction of marine fisheries catches for the Republic of Cape Verde. In: Belhabib D, Zeller D, Harper S, Pauly D (eds) Marine Fisheries catches in West Africa, 1950–2010, part I. Fisheries Centre Research Reports, Vancouver, pp 79–90

    Google Scholar 

  • Smith-Vaniz WF, Sidibe A, Nunoo F, Lindeman K, Williams AB, Quartey R, Camara K, Carpenter KE, Montiero V, de Morais L, Djiman R, Sylla M & Sagna A (2015). Trachurus trachurus. The IUCN Red List of Threatened Species 2015: e.T198647A43157137. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T198647A43157137.en. Downloaded on 01 November 2021

  • Soler G, Bessudo S, Guzman A (2013) Long term monitoring of pelagic fishes at Malpelo Island. Colombia Lat Am J Conserv 3:28–37

    Google Scholar 

  • Stobberup KA, Ramos VDM, Coelho ML (2004) Ecopath Model of the Cape Verde coastal ecosystem. In: Palomares MLD, Pauly D (eds) West African marine ecosystems: models and fisheries impacts. Fisheries Centre Research Reports, Vancouver, pp 39–56

    Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466(7310):1098–1101

    Article  CAS  Google Scholar 

  • UNESCO. Malpelo Fauna and Flora Sanctuary—UNESCO World Heritage Centre 1992–2018. whc.unesco.org/en/list/1216 (accessed 31 May 2019)

  • United Nations, Department of Economic and Social Affairs, Population Division (2019) World Population Prospects 2019. Custom data acquired via website (Accessed 20 May 2019)

  • van Denderen PD, Lindegren M, MacKenzie BR, Watson RA, Andersen KH (2017) Global patterns in marine predatory fish. Nat Ecol Evol 2:65–70. https://doi.org/10.1038/s41559-017-0388-z

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  Google Scholar 

  • Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob Ecol Biogeogr 22:671–681

    Article  Google Scholar 

  • Villéger S, Grenouillet G, Brosse S (2014) Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Glob Ecol Biogeogr 23(12):1450-1460. https://doi.org/10.1111/geb.12226

    Article  Google Scholar 

  • Villéger S, Brosse S, Mouchet M, Mouillot D, Vanni MJ (2017) Functional ecology of fish: current approaches and future challenges. Aquat Sci 79:783–801

    Article  Google Scholar 

  • Wirtz P, Fricke R, Biscoito MJ (2008) The coastal fishes of the Cape Verde Islands—New records and an annotated check-list. Zootaxa 1715:1–26

    Article  Google Scholar 

Download references

Acknowledgements

We thank Monaco Explorations for supporting the fieldwork and The Bertarelli Foundation for TBL’s time and salary in the field. We are grateful to the Master and Crew of the RV Yersin for supporting sampling activities. We thank Dr. Christophe Eizaguirre for his support as a teacher and adviser to MS.

Funding

Field activities were funded by Monaco Explorations. The Bertarelli Foundation funded TBL’s salary.

Author information

Authors and Affiliations

Authors

Contributions

MS conceived and conducted the analysis and as part of her MSc thesis. TBL supervised and managed the study and co-wrote the first draft together with MS. TBL and JB coordinated the BRUVS deployment, with assistance from RH, LP, CP, AP and VM. DM and SV advised on the functional analysis. DM is the PI of the Monaco Exploration ‘Megafauna’ team. All authors helped revise the manuscript.

Corresponding author

Correspondence to Tom B. Letessier.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Ethical approval

As none of the authors are resident in Cape Verde, research there was conducted under authorization No. 08/GP-CA.AMP/2017.

Additional information

Responsible Editor: C- Harrod.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberg, M., Juhel, JB., Marques, V. et al. Similar trait structure and vulnerability in pelagic fish faunas on two remote island systems. Mar Biol 169, 15 (2022). https://doi.org/10.1007/s00227-021-03998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03998-6

Keywords

Navigation