Skip to main content

Advertisement

Log in

Effects of tidal emersion and marine heatwaves on cuttlefish early ontogeny

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Anthropogenic climate change has increased the frequency and intensity of extreme weather events, such as marine heatwaves (MHW). They exert a strong influence over the structure and functioning of marine ecosystems, considering temperature is one of the most critical environmental factors affecting marine life. Additionally, intertidal habitats are ecologically challenging ecosystems, and inhabiting organisms need to possess the necessary mechanisms to adapt to the periodic fluctuations in physical characteristics across tidal cycles. To assess the effect of simulated MHWs (categories I and IV) and low tide conditions (emersion) on the early development of the common cuttlefish Sepia officinalis, the development time and hatching success were evaluated, as well as the antioxidant enzymatic machinery, lipid peroxidation, HSP70 and total ubiquitin concentrations. Embryonic development time decreased significantly with temperature, but tidal emersion held no significant impact on development time or hatching success. Superoxide dismutase activity levels were significantly increased with temperature but lowered under emersion conditions. Glutathione-S-transferase activity significantly increased with temperature, while glutathione peroxidase activity was significantly enhanced under emersion. Catalase activity, lipid peroxidation, HSP70 content and total ubiquitin content were not affected by any of the treatments. These findings suggest that while development time is greatly conditioned by temperature, S. officinalis embryos are remarkably resilient to emersion conditions. Moreover, the simulated marine heatwaves did not elicit any sub-lethal oxidative stress-related effects, suggesting that such temperatures were still within the optimum range of the cuttlefish thermal window of aerobic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available upon request.

Code availability

Data will be made available upon request.

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 138:405–415. https://doi.org/10.1016/j.cbpb.2004.05.013

    Article  CAS  Google Scholar 

  • Aguilera J, Rautenberger R (2011) Oxidative stress tolerance strategies of intertidal macroalgae. Oxidative Stress in Aquatic Ecosystems. John Wiley & Sons, Ltd, Chichester, pp 58–71

    Chapter  Google Scholar 

  • Axenov-Gribanov DV, Bedulina DS, Shatilina ZM, Lubyaga YA, Vereshchagina KP, Timofeyev MA (2014) A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comp Biochem Physiol B Biochem Mol Biol 167:16–22. https://doi.org/10.1016/j.cbpb.2013.09.006

    Article  CAS  Google Scholar 

  • Banzon V, Smith TM, Chin TM, Liu C, Hankins W (2016) A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst Sci Data 8:165–176. https://doi.org/10.5194/essd-8-165-2016

    Article  Google Scholar 

  • Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, Alsalamat HA, Bashatwah RM (2018) Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med 50:193–201. https://doi.org/10.5152/eurasianjmed.2018.17397

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  CAS  Google Scholar 

  • Belcheva NN, Chelomin VP (2011) Glutathione S-Transferase activity in marine invertebrates from Peter the Great Bay in the Sea of Japan. Russ J Mar Biol 37:62–68. https://doi.org/10.1134/S1063074011010056

    Article  CAS  Google Scholar 

  • Boletzky SV (1986) Encapsulation of cephalopod embryos—A search for functional correlations. Am Malacol Bull. https://doi.org/10.5860/choice.48-6651

    Article  Google Scholar 

  • Bonnaud L, Franko D, Vouillot L, Bouteau F (2013) A study of the electrical polarization of Sepia officinalis yolk envelope, a role for Na+/K+-ATPases in osmoregulation? Commun Integr Biol. https://doi.org/10.4161/cib.26035

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  • Caeiro S, Vaz-Fernandes P, Martinho AP, Costa PM, Silva MJ, Lavinha J, Matias-Dias C, Machado A, Castanheira I, Costa MH (2017) Environmental risk assessment in a contaminated estuary: an integrated weight of evidence approach as a decision support tool. Ocean Coast Manag 143:51–62. https://doi.org/10.1016/j.ocecoaman.2016.09.026

    Article  Google Scholar 

  • Chiabai A, Quiroga S, Martinez-Juarez P, Higgins S, Taylor T (2018) The nexus between climate change, ecosystem services and human health: towards a conceptual framework. Sci Total Environ 635:1191–1204. https://doi.org/10.1016/j.scitotenv.2018.03.323

    Article  CAS  Google Scholar 

  • Dong Y, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol Bull 215:173–181. https://doi.org/10.2307/25470698

    Article  Google Scholar 

  • Eyring V, Gillett NP, Achuta Rao KM, Barimalala R, Barreiro Parrillo M, Bellouin N, Cassou C, Durack PJ, Kosaka Y, McGregor S, Min S, Morgenstern O, Sun Y (2021) Human influence on the climate system. In: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492. https://doi.org/10.1126/science.1155676

    Article  CAS  Google Scholar 

  • Freire CA, Welker AF, Storey JM, Storey KB, Hermes-Lima M (2011) Oxidative stress in estuarine and intertidal environments (temperate and tropical). Oxidative Stress in Aquatic Ecosystems. John Wiley & Sons, Ltd, Chichester, pp 41–57

    Chapter  Google Scholar 

  • Guerra A (2006) Ecology of Sepia officinalis. Vie Milieu 56:97–107

    Google Scholar 

  • Gulev SK, Thorne PW, Ahn J, Denterner FJ, Domingues CM, Gerland S, Gong D, Kaufman DS, Nnamchi HC, Quaas J, Rivera JA, Sathyendranath S, Smith SL, Trewin B, von Schuckmann K, Vose RS (2021) Changing state of the climate system. In: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Hawkins SJ, Evans AJ, Firth LB, Genner MJ, Herbert RJH, Adams LC, Moore PJ, Mieszkowska N, Thompson RC, Burrows MT, Fenburg PB (2016) Impacts and effects of ocean warming on intertidal rocky habitats. In: Laffoley D, Baxter JM (eds) Explaining Ocean Warming: Causes, Scale, Effects and Consequences. Gland, IUCN, Switzerland, pp 147–176

    Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404. https://doi.org/10.1146/annurev.ecolsys.37.091305.110149

    Article  Google Scholar 

  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, Benthuysen JA, Burrows MT, Donat MG, Feng M, Holbrook NJ, Moore PJ, Scannell HA, Sen Gupta A, Wernberg T (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238. https://doi.org/10.1016/j.pocean.2015.12.014

    Article  Google Scholar 

  • Hobday AJ, Oliver ECJ, Sen GA, Benthuysen JA, Burrows MGD MT, Holbrook NJ, Moore PJ, Thomsen TW MS (2018) Categorizing and naming marine heatwaves. Oceanography. https://doi.org/10.1007/s00376-014-4097-0

    Article  Google Scholar 

  • Hu MY (2016) Effects of C02 driven ocean acidification on ontogenetic stages of the cutllefisii Sepia officinalis. Vie Milieu 66:57–63

    Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54:287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  • Jereb P, Roper CFE (2005) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes, Rome, p 262

    Google Scholar 

  • Jereb P, Allcock AL, Lefkaditou E, Piatkowski U, Pierce GJ (2015) Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report, Copenhagen, p 360

    Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958. https://doi.org/10.1016/0006-291X(76)90747-6

    Article  CAS  Google Scholar 

  • Lee J-Y, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, Engelbrecht F, Fischer E, Fyfe JC, Jones C, Maycock A, Mutemi J, Ndiaye O, Panickal S, Zhou T (2021) Future global climate: scenario-based projections and near-term information. In: climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. https://doi.org/10.1146/annurev.physiol.68.040104.110001

    Article  CAS  Google Scholar 

  • Lesser MP (2011) Oxidative stress in tropical marine ecosystems. Oxidative Stress in Aquatic Ecosystems. John Wiley & Sons, Ltd, Chichester, pp 7–19

    Chapter  Google Scholar 

  • Logan CA, Somero GN (2011) Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am J Physiol Integr Comp Physiol 300:R1373–R1383. https://doi.org/10.1152/ajpregu.00689.2010

    Article  CAS  Google Scholar 

  • Mariana SA, Badr G (2019) Impact of heat stress on the immune response of fishes. J Surv Fish Sci 5:149–159

    Article  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888. https://doi.org/10.1007/s00227-012-1954-1

    Article  CAS  Google Scholar 

  • Moran AL, Woods HA (2007) Oxygen in egg masses: interactive effects of temperature, age and egg-mass morphology on oxygen supply to embryos. J Exp Biol 210:722–731. https://doi.org/10.1242/jeb.02702

    Article  CAS  Google Scholar 

  • Moura É, Pimentel M, Santos CP, Sampaio E, Pegado MR, Lopes VM, Rosa R (2019) Cuttlefish early development and behavior under future high CO2 conditions. Front Physiol 10:1–10. https://doi.org/10.3389/fphys.2019.00975

    Article  Google Scholar 

  • Njemini R, Demanet C, Mets T (2005) Comparison of two ELISAs for the determination of Hsp70 in serum. J Immunol Methods 306:176–182. https://doi.org/10.1016/j.jim.2005.08.012

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  • Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Sen Gupta A, Hobday AJ, Holbrook NJ, Perkins-Kirkpatrick SE, Scannell HA, Straub SC, Wernberg T (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-03732-9

    Article  CAS  Google Scholar 

  • Oliver ECJ, Burrows MT, Donat MG, Sen Gupta A, Alexander LV, Perkins-Kirkpatrick SE, Benthuysen JA, Hobday AJ, Holbrook NJ, Moore PJ, Thomsen MS, Wernberg T, Smale DA (2019) Projected marine heatwaves in the 21st century and the potential for ecological impact. Front Mar Sci 6:1–12. https://doi.org/10.3389/fmars.2019.00734

    Article  Google Scholar 

  • Pannunzio TM, Storey KB (1998) Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. J Exp Mar Bio Ecol 221:277–292. https://doi.org/10.1016/S0022-0981(97)00132-9

    Article  CAS  Google Scholar 

  • Pegado MR, Santos CP, Pimentel M, Cyrne R, Sampaio E, Temporão A, Röckner J, Diniz M, Rosa R (2020) Lack of oxidative damage on temperate juvenile catsharks after a long-term ocean acidification exposure. Mar Biol 167:1–10. https://doi.org/10.1007/s00227-020-03770-2

    Article  CAS  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:1–5. https://doi.org/10.1029/2012GL053361

    Article  Google Scholar 

  • Pierce GJ, Allcock L, Bruno I, Bustamante P, González Á, Guerra Á, Jereb P (2010) Cephalopod biology and fisheries in Europe. ICES Cooperative Research Report No. 303

  • Pimentel MS, Trübenbach K, Faleiro F, Boavida-Portugal J, Repolho T, Rosa R (2012) Impact of ocean warming on the early ontogeny of cephalopods: a metabolic approach. Mar Biol 159:2051–2059. https://doi.org/10.1007/s00227-012-1991-9

    Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. https://doi.org/10.1126/science.1135471

    Article  CAS  Google Scholar 

  • Pörtner HO, Bock C, Mark FC (2017) Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 220:2685–2696. https://doi.org/10.1242/jeb.134585

    Article  Google Scholar 

  • Redlin M, Gries T (2021) Anthropogenic climate change: the impact of the global carbon budget. Theor Appl Climatol 146:713–721. https://doi.org/10.1007/s00704-021-03764-0

    Article  Google Scholar 

  • Reid SG, Bernier NJ, Perry SF (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 120:1–27. https://doi.org/10.1016/S0742-8413(98)00037-1

    Article  CAS  Google Scholar 

  • Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci 105:20776–20780. https://doi.org/10.1073/pnas.0806886105

    Article  Google Scholar 

  • Rosa R, Seibel BA (2010) Metabolic physiology of the Humboldt squid, Dosidicus gigas: implications for vertical migration in a pronounced oxygen minimum zone. Prog Oceanogr 86:72–80. https://doi.org/10.1016/j.pocean.2010.04.004

    Article  Google Scholar 

  • Rosa R, Pimentel MS, Boavida-Portugal J, Teixeira T, Trübenbach K, Diniz M (2012) Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE. https://doi.org/10.1371/journal.pone.0038282

    Article  Google Scholar 

  • Rosa R, Trubenbach K, Repolho T, Pimentel M, Faleiro F, Boavida-Portugal J, Baptista M, Lopes VM, Dionísio G, Leal MC, Calado R, Pörtner HO (2013) Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proc R Soc B Biol Sci 280:1–7. https://doi.org/10.1098/rspb.2013.1695

    Article  CAS  Google Scholar 

  • Rosa R, Lopes AR, Pimentel M, Faleiro F, Baptista M, Trübenbach K, Narciso L, Dionísio G, Pegado MR, Repolho T, Calado R, Diniz M (2014) Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming. Glob Change Biol 20:3068–3079. https://doi.org/10.1111/gcb.12621

    Article  Google Scholar 

  • Rosa R, Ricardo Paula J, Sampaio E, Pimentel M, Lopes AR, Baptista M, Guerreiro M, Santos C, Campos D, Almeida-Val VMF, Calado R, Diniz M, Repolho T (2016) Neuro-oxidative damage and aerobic potential loss of sharks under elevated CO2 and warming. Mar Biol 163:119. https://doi.org/10.1007/s00227-016-2898-7

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    Article  CAS  Google Scholar 

  • Teixeira T, Diniz M, Calado R, Rosa R (2013) Coral physiological adaptations to air exposure: heat shock and oxidative stress responses in Veretillum cynomorium. J Exp Mar Bio Ecol 439:35–41. https://doi.org/10.1016/j.jembe.2012.10.010

    Article  CAS  Google Scholar 

  • Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979. https://doi.org/10.1242/jeb.038034

    Article  CAS  Google Scholar 

  • Wang J, Pierce GJ, Boyle PR, Denis V, Robin JP, Bellido JM (2003) Spatial and temporal patterns of cuttlefish (Sepia officinalis) abundance and environmental influences—A case study using trawl fishery data in French Atlantic coastal, English Channel and adjacent waters. ICES J Mar Sci 60:1149–1158

    Article  Google Scholar 

  • Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  CAS  Google Scholar 

  • Wolf G, Verheyen E, Vlaeminck A, Lemaire J, Decleir W (1985) Respiration of Sepia officinalis during embryonic and early juvenile life. Mar Biol 90:35–39. https://doi.org/10.1007/BF00428212

    Article  Google Scholar 

  • Yamashita M, Yabu T, Ojima N (2010) Stress protein HSP70 in fish. Aqua-BioSci Monogr 3:111–141. https://doi.org/10.5047/absm.2010.00304.0111

    Article  Google Scholar 

Download references

Funding

This study was funded by the project VALPRAD (MAR-01.04.02-FEAMP-0007) within the framework of MAR2020 program. The authors also acknowledge funding from Fundação para a Ciência e Tecnologia (FCT) under the strategic project UIDB/04292/2020 granted to MARE, project LA/P/0069/2020 granted to the Associate Laboratory ARNET, project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HBm, and the researcher contract (DL57/2016/CP1479/CT0023) granted to TR.

Author information

Authors and Affiliations

Authors

Contributions

RR, VML and JRP conceptualized the study. JC, VML, EO, MC and JRP collected and analyzed the data. RR and MD provided supervision. All authors contributed to and approved the submitted version.

Corresponding author

Correspondence to Rui Rosa.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

All the procedures were approved by the FCUL Animal Welfare Committee (ORBEA FCUL) and the Portuguese General-Directorate for Food and Veterinarian Contacts (DGAV) of the Portuguese Government, according to National (Decreto-Lei 113/2013) and the EU legislation (Directive 2010/63/EU) on the protection of animals used for scientific purposes (within the framework of MAR2020— MAR-01.04.02-FEAMP-0007).

Additional information

Responsible Editor: E. A.G. Vidal.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 250 kb)

Supplementary file2 (PDF 91 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, J., Court, M., Otjacques, E. et al. Effects of tidal emersion and marine heatwaves on cuttlefish early ontogeny. Mar Biol 170, 3 (2023). https://doi.org/10.1007/s00227-022-04150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-022-04150-8

Keywords

Navigation