Skip to main content
Log in

Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate the effects of the cytochrome P450 3A4 (CYP34A) inhibitor itraconazole on the pharmacokinetics and pharmacodynamics of orally and intravenously administered oxycodone.

Methods

Twelve healthy subjects were administered 200 mg itraconazole or placebo orally for 5 days in a four-session paired cross-over study. On day 4, oxycodone was administered intravenously (0.1 mg/kg) in the first part of the study and orally (10 mg) in the second part. Plasma concentrations of oxycodone and its oxidative metabolites were measured for 48 h, and pharmacodynamic effects were evaluated.

Results

Itraconazole decreased plasma clearance (Cl) and increased the area under the plasma concentration–time curve (AUC0–∞) of intravenous oxycodone by 32 and 51%, respectively (P < 0.001) and increased the AUC(0–∞) of orally administrated oxycodone by 144% (P < 0.001). Most of the pharmacokinetic changes in oral oxycodone were seen in the elimination phase, with modest effects by itraconazole on its peak concentration, which was increased by 45% (P = 0.009). The AUC(0–48) of noroxycodone was decreased by 49% (P < 0.001) and that of oxymorphone was increased by 359% (P < 0.001) after the administration of oral oxycodone. The pharmacologic effects of oxycodone were enhanced by itraconazole only modestly.

Conclusions

Itraconazole increased the exposure to oxycodone by inhibiting its CYP3A4-mediated N-demethylation. The clinical use of itraconazole in patients receiving multiple doses of oxycodone for pain relief may increase the risk of opioid-associated adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mucci-LoRusso P, Berman BS, Silberstein PT, Citron ML, Bressler L, Weinstein SM, Kaiko RF, Buckley BJ, Reder RF (1998) Controlled-release oxycodone compared with controlled-release morphine in the treatment of cancer pain: A randomized, double-blind, parallel-group study. Eur J Pain 2:239–249

    Article  CAS  PubMed  Google Scholar 

  2. Silvasti M, Rosenberg P, Seppala T, Svartling N, Pitkanen M (1998) Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiol Scand 42:576–580

    Article  CAS  PubMed  Google Scholar 

  3. Pöyhiä R, Seppälä T, Olkkola KT, Kalso E (1992) The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol 33:617–621

    PubMed  Google Scholar 

  4. Kirvelä M, Lindgren L, Seppälä T, Olkkola KT (1996) The pharmacokinetics of oxycodone in uremic patients undergoing renal transplantation. J Clin Anesth 8:13–18

    Article  PubMed  Google Scholar 

  5. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32:447–454

    Article  CAS  PubMed  Google Scholar 

  6. Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: Role of circulating active metabolites. Clin Pharmacol Ther 79:461–479

    Article  CAS  PubMed  Google Scholar 

  7. Zwisler ST, Enggaard TP, Noehr-Jensen L, Pedersen RS, Mikkelsen S, Nielsen F, Brosen K, Sindrup SH (2009) The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol 104:335–334

    Article  CAS  PubMed  Google Scholar 

  8. Heiskanen T, Olkkola KT, Kalso E (1998) Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 64:603–611

    Article  CAS  PubMed  Google Scholar 

  9. Hagelberg NM, Nieminen TH, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65:263–271

    Article  CAS  PubMed  Google Scholar 

  10. Nieminen T, Hagelberg N, Saari TI, Laine K, Neuvonen PJ, Olkkola KT (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology 110:1371–1378

    Article  CAS  PubMed  Google Scholar 

  11. Baran R, Hay RJ, Garduno JI (2008) Review of antifungal therapy and the severity index for assessing onychomycosis: part I. J Dermatolog Treat 19:72–81

    Article  CAS  PubMed  Google Scholar 

  12. Gafter-Gvili A, Vidal L, Goldberg E, Leibovici L, Paul M (2008) Treatment of invasive candidal infections: systematic review and meta-analysis. Mayo Clin Proc 83:1011–1021

    Article  PubMed  Google Scholar 

  13. Varhe A, Olkkola KT, Neuvonen PJ (1994) Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clinical Pharmacol Ther 56:601–607

    CAS  Google Scholar 

  14. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82:511–516

    Article  CAS  PubMed  Google Scholar 

  15. Kaukonen KM, Olkkola KT, Neuvonen PJ (1997) Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 62:510–517

    Article  CAS  PubMed  Google Scholar 

  16. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  CAS  PubMed  Google Scholar 

  17. Wang E, Lew K, Casciano CN, Clement RP, Johnson WW (2002) Interaction of common azole antifungals with P-glycoprotein. Antimicrob Agents Chemother 46:260–265

    Google Scholar 

  18. Pöyhiä R, Olkkola KT, Seppälä T, Kalso E (1991) The pharmacokinetics of oxycodone after intravenous injection in adults. Br J Clin Pharmacol 32:516–518

    PubMed  Google Scholar 

  19. Michna E, Ross EL, Hynes WL, Nedeljkovic SS, Soumekh S, Janfaza D, Palombi D, Jamison RN (2008) Predicting aberrant drug behavior in patients treated for chronic pain. J Pain Symptom Manage 28:250–258

    Article  Google Scholar 

  20. Gubbins PO, Gurley BJ, Bowman J (1998) Rapid and sensitive high performance liquid chromatographic method for the determination of itraconazole and its hydroxy-metabolite in human serum. J Pharm Biomed Anal 16:1005–1012

    Article  CAS  PubMed  Google Scholar 

  21. Neuvonen M, Neuvonen PJ (2008) Determination of oxycodone, noroxycodone, oxymorphone, and noroxymorphone in human plasma by liquid chromatography-electrospray-tandem mass spectrometry. Ther Drug Monit 30:333–340

    Article  CAS  PubMed  Google Scholar 

  22. Sistonen J, Fuselli S, Levo A, Sajantila A (2005) CYP2D6 genotyping by a multiplex primer extension reaction. Clin Chem 51:1291–1295

    Article  CAS  PubMed  Google Scholar 

  23. Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  24. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3:132–135

    Article  CAS  PubMed  Google Scholar 

  25. Stone BM (1984) Pencil and paper tests—sensitivity to psychotropic drugs. Br J Clin Pharmacol 18[Suppl 1]:15S–20S

    PubMed  Google Scholar 

  26. Cogan DG (1941) Simplified entopic pupillometer. Am J Ophthalmol 24:1431–1433

    Google Scholar 

  27. Wolff BB, Kantor TG, Jarvik ME, Laska E (1966) Response of experimental pain to analgesic drugs. 1. Morphine, aspirin, and placebo. Clin Pharmacol Ther 7:224–238

    CAS  PubMed  Google Scholar 

  28. Jalava KM, Partanen J, Neuvonen PJ (1997) Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 19:609–611

    Article  CAS  PubMed  Google Scholar 

  29. Boström E, Simonsson USH, Hammarlund-Udenaes M (2005) Oxycodone pharmacokinetics and pharmacodynamics in the rat in the presence of the P-glycoprotein inhibitor PSC833. J Pharm Sci 94:1060–1066

    Article  PubMed  Google Scholar 

  30. Hassan HE, Myers AL, Lee IJ, Coop A, Eddington ND (2007) Oxycodone induces overexpression of P-glycoprotein (ABCB1) and affects paclitaxel´s tissue distribution in Sprague Dawley rats. J Pharm Sci 96:2494–2506

    Article  CAS  PubMed  Google Scholar 

  31. Koltzenburg M, Pokorny R, Gasser UE, Richarz U (2006) Differential sensitivity of three experimental pain models in detecting the analgesic effects of transdermal fentanyl and buprenorphine. Pain 126:165–174

    Article  CAS  PubMed  Google Scholar 

  32. Sarton E, Olofsen E, Romberg R et al (2000) Sex differences in morphine analgesia: An experimental study in healthy volunteers. Anesthesiology 93:1245–1254

    Article  CAS  PubMed  Google Scholar 

  33. Varhe A, Olkkola KT, Neuvonen PJ (1996) Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 42:465–470

    Article  CAS  PubMed  Google Scholar 

  34. Jalava KM, Olkkola KT, Neuvonen PJ (1997) Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 61:410–415

    Article  CAS  PubMed  Google Scholar 

  35. Jalava M, Olkkola KT, Neuvonen PJ (1998) Fluconazole, but not itraconazole decreases the metabolism of losartan to E-3174. Eur J Clin Pharmacol 53:445–449

    Article  Google Scholar 

  36. Tallgren M, Olkkola KT, Seppälä T, Höckerstedt K, Lindgren L (1997) Pharmacokinetics and ventilatory effects of oxycodone before and after liver transplantation. Clin Pharmacol Ther 61:655–661

    Article  CAS  PubMed  Google Scholar 

  37. Liukas A, Kuusniemi K, Aantaa R, Virolainen P, Neuvonen M, Neuvonen PJ, Olkkola KT (2008) Plasma concentrations of oral oxycodone are greatly increased in the elderly. Clin Pharmacol Ther 84:462–467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Mrs. Elina Kahra (Medical laboratory technologist, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Turku, Finland) for her skillful technical assistance.

Financial Support

Turku University Hospital research fund EVO 13821, Turku, Finland; Finnish Society of Anaesthesiologists, Helsinki, Finland; Finnish Association for the Study of Pain, Helsinki, Finland and Sigfrid Juselius Foundation, Helsinki, Finland

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teijo I. Saari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saari, T.I., Grönlund, J., Hagelberg, N.M. et al. Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 66, 387–397 (2010). https://doi.org/10.1007/s00228-009-0775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0775-8

Keywords

Navigation