Skip to main content

Advertisement

Log in

Automated estimation of ischemic core prior to thrombectomy: comparison of two current algorithms

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Endovascular thrombectomy (EVT) improves clinical outcomes in ischemic stroke with large vessel occlusion. Clinical benefits are inversely proportional to size of the pre-treatment ischemic core. This study compared estimated ischemic core volumes by two different CT perfusion (CTP) automated algorithms to the gold standard follow-up infarct volume using diffusion-weighted imaging (DWI) to assess for congruence, and thus eligibility for EVT.

Methods

Retrospective, single-center cohort study of 102 patients presenting to a comprehensive stroke center between 2012 and 2018. Inclusion criteria were CT perfusion prior to EVT, successful EVT with mTIBI 2b-3 reperfusion, and DWI post-EVT. CTP data were retrospectively processed by two algorithms: “delay and dispersion insensitive deconvolution” (DISD, RAPID software) versus “delay and dispersion corrected single value decomposition” (ddSVD, Mistar software), using commercially available software. Core volumes were compared to follow up DWI using independent software (MRIcron). Agreement between each algorithm and DWI was estimated using Lin’s concordance coefficient and analyzed using reduced major axis regression.

Results

We included 102 patients. Both algorithms had excellent agreement with DWI (Lin’s concordance coefficients: DISD 0.8 (95% CI: 0.73; 0.87), ddSVD 0.92 (95% CI: 0.89; 0.95). Compared to ddSVD (reduced major axis slope = 0.95), DISD exhibited a larger extent of proportional bias (slope = 1.12).

Conclusion

The ddSVD algorithm better correlates with DWI follow-up infarct volume than DISD processing. The DISD algorithm overestimated larger ischemic cores which may lead to patient exclusion from thrombectomy based on selection by core volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Available upon request

References

  1. Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, Schellinger PD, Toni D, de Vries J, White P, Fiehler J (2019) European Stroke Organisation (ESO) - European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke. JNIS:neurintsurg-2018-014569. https://doi.org/10.1136/neurintsurg-2018-014569

  2. Goyal M, Menon B, Zwam W, Dippel DWJ, Mitchell PJ, Demchuk AM et al (2016) Endovascular thrombectomy after large vessel ischemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731

    Article  Google Scholar 

  3. Powers W, Rabinstein A, Ackerson T, Adeoye OM, Bambakidis NC, Becker K et al (2018) 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49(3):46–99

    Article  Google Scholar 

  4. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP, for the DEFUSE Investigators (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517

    Article  Google Scholar 

  5. Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, Gonzalez RG (2009) MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke 40:2046–2054

    Article  Google Scholar 

  6. Parsons MW, Christensen S, McElduff P, Levi CR, Butcher KS, De Silva DA et al (2010) Pretreatment diffusion- and perfusion-MR lesion volumes have a crucial influence on clinical response to stroke thrombolysis. J Cereb Blood Flow Metab 30:1214–1225

    Article  Google Scholar 

  7. Olivot JM, Mosimann PJ, Labreuche J, Inoue M, Meseguer E, Desilles JP, Rouchaud A, Klein IF, Straka M, Bammer R, Mlynash M, Amarenco P, Albers GW, Mazighi M (2013) Impact of diffusion-weighted imaging lesion volume on the success of endovascular reperfusion therapy. Stroke 44:2205–2211

    Article  Google Scholar 

  8. Sarraj A, Hassan AE, Savitz S, Sitton C, Grotta J, Chen P, Cai C, Cutter G, Imam B, Reddy S, Parsha K, Pujara D, Riascos R, Vora N, Abraham M, Kamal H, Haussen DC, Barreto AD, Lansberg M, Gupta R, Albers GW (2019) Outcomes of endovascular thrombectomy vs medical management alone in patients with large ischemic cores: a secondary analysis of the optimizing patient’s selection for endovascular treatment in acute ischemic stroke (SELECT) study. JAMA Neurol 76(10):1147–1156. https://doi.org/10.1001/jamaneurol.2019.2109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kerenyi L, Kardos L, Szász J, Szatmari D, Bereczki D, Hegedus et al. Factors influencing hemorrhagic transformation in ischemic stroke: a clinicopathological comparison. Eur J Neurol 2006;13:1251-1255

  10. Yu W, Jiang W (2019) A simple imaging guide for endovascular thrombectomy in acute ischemic stroke: from time window to perfusion mismatch and beyond. Front Neurol. https://doi.org/10.3389/fneur.2019.00502

  11. Bivard A, Levi C, Spratt N, Parsons M (2013) Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology 267(2):543–550

    Article  Google Scholar 

  12. Khaw AV, Angermaier A, Michel P, Kirsch M, Kessler C, Langner S (2016) Inter-rater agreement in three perfusion-computed tomography evaluation methods before endovascular therapy for acute ischemic stroke. J Stroke Cerebrovasc Dis 25:960–968. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68(2):495–506. https://doi.org/10.1002/mrm.23257

    Article  PubMed  Google Scholar 

  14. Lin L, Bivard A, Kleinig T, Spratt NJ, Levi CR, Qing Y et al (2018) Correction for delay and dispersion results in more accurate cerebral blood flow ischemic core measurement in acute stroke. Stroke 49(4):924–930

    Article  Google Scholar 

  15. Bivard A, Kleinig T, Miteff F, Butcher K, Lin L, Levi C, Parsons M (2017) Ischemic core thresholds change with time to reperfusion: a case control study. Ann Neurol 82:995–1003. https://doi.org/10.1002/ana.25109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mlynash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG, DEFUSE 3 Investigators (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. NEJM 378(8):708–718

    Article  Google Scholar 

  17. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics. 33(1):159–174

    Article  CAS  Google Scholar 

  18. Walter SD, Eliasziw M, Donner A (1998) Sample size and optimal designs for reliability studies. Stat Med 17:101–110. https://doi.org/10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  19. Martins N, Aires A, Mendez B, Boned S, Rubiera M, Tomasello A, Coscojuela P, Hernandez D, Muchada M, Rodríguez-Luna D, Rodríguez N, Juega JM, Pagola J, Molina CA, Ribó M (2018) Ghost infarct core and admission computed tomography perfusion: redefining the role of neuroimaging in acute ischemic stroke. Intervent Neurol 7:513–521. https://doi.org/10.1159/000490117

    Article  Google Scholar 

  20. Kranz PG, Eastwood JD (2009) Does diffusion-weighted imaging represent the ischemic core? An evidence-based systematic review [published correction appears in AJNR Am J Neuroradiol. 2009 Aug;30(7):E114]. AJNR Am J Neuroradiol 30(6):1206–1212. https://doi.org/10.3174/ajnr.A1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schaefer PW, Souza L, Kamalian S, Hirsch JA, Yoo AJ, Kamalian S, Gonzalez RG, Lev MH (2015) Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke. Stroke. 46(2):419–424. https://doi.org/10.1161/STROKEAHA.114.007117

    Article  PubMed  Google Scholar 

  22. Inoue M, Mlynash M, Christensen S, Wheeler HM, Straka M, Tipimeni A et al (2014) Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke. 45:1024–1028

    Article  Google Scholar 

  23. Chemmanam T, Campbell BC, Christensen S, Nagakane Y, Desmond PM, Bladin CF et al (2010) EPITHET Investigators. Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion-diffusion mismatch. Neurology. 75:1040–1047

    Article  CAS  Google Scholar 

  24. Campbell BC, Purushotham A, Christensen S, Desmond PM, Nagakane Y, Parsons MW et al (2012) The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab 32:50–56

    Article  Google Scholar 

  25. Rivers CS, Wardlaw JM, Armitage PA, Bastin ME, Carpenter TK, Cvoro V, Hand PJ, Dennis MS (2006) Persistent infarct hyperintensity on diffusion-weighted imaging late after stroke indicates heterogeneous, delayed, infarct evolution. Stroke. 37:1418–1423

    Article  Google Scholar 

Download references

Materials availability

Available upon request

Code availability

RAPID (Version 4.6.1, iSchemaView, MountainView, California) and Mistar (Version 3.2.63, Apollo Medical Imaging Technology, Melbourne, Australia) were used (see “Methods” section).

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

BY and MP conceived the study. LG performed data collection. LG, BY, MP, and AB analyzed data. LG drafted the manuscript and all authors contributed equally to its revision. LC, BY, MP, and AB were involved in the statistical analysis. LG and BY take responsibility for the paper as a whole.

Corresponding author

Correspondence to Lakshini Gunasekera.

Ethics declarations

Ethics approval

Royal Melbourne Hospital Institutional Review Board approval (HREC QA 2013-072).

Consent to participate/consent for publication

Not applicable

Conflicts of interest

MP and AB have research partnerships with Apollo, Siemens, and Canon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1

Sample outcome from anonymised patient (PNG 3945 kb)

High resulotion image (TIF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekera, L., Churilov, L., Mitchell, P. et al. Automated estimation of ischemic core prior to thrombectomy: comparison of two current algorithms. Neuroradiology 63, 1645–1649 (2021). https://doi.org/10.1007/s00234-021-02651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02651-9

Keywords

Navigation