Skip to main content

Advertisement

Log in

New insights into the evaluation of peripheral nerves lesions: a survival guide for beginners

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

A Correction to this article was published on 31 March 2022

This article has been updated

Abstract

Purpose

To perform a review of the physical basis of DTI and DCE-MRI applied to Peripheral Nerves (PNs) evaluation with the aim of providing readers the main concepts and tools to acquire these types of sequences for PNs assessment. The potential added value of these advanced techniques for pre-and post-surgical PN assessment is also reviewed in diverse clinical scenarios. Finally, a brief introduction to the promising applications of Artificial Intelligence (AI) for PNs evaluation is presented.

Methods

We review the existing literature and analyze the latest evidence regarding DTI, DCE-MRI and AI for PNs assessment. This review is focused on a practical approach to these advanced sequences providing tips and tricks for implementing them into real clinical practice focused on imaging postprocessing and their current clinical applicability. A summary of the potential applications of AI algorithms for PNs assessment is also included.

Results

DTI, successfully used in central nervous system, can also be applied for PNs assessment. DCE-MRI can help evaluate PN's vascularization and integrity of Blood Nerve Barrier beyond the conventional gadolinium-enhanced MRI sequences approach. Both approaches have been tested for PN assessment including pre- and post-surgical evaluation of PNs and tumoral conditions. AI algorithms may help radiologists for PN detection, segmentation and characterization with promising initial results.

Conclusion

DTI, DCE-MRI are feasible tools for the assessment of PN lesions. This manuscript emphasizes the technical adjustments necessary to acquire and post-process these images. AI algorithms can also be considered as an alternative and promising choice for PN evaluation with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Novak CB, Anastakis DJ, Beaton DE et al (2011) Biomedical and psychosocial factors associated with disability after peripheral nerve injury. J Bone Jt Surg - Ser A 93:929–936. https://doi.org/10.2106/JBJS.J.00110

    Article  Google Scholar 

  2. Ciaramitaro P, Mondelli M, Logullo F et al (2010) Traumatic peripheral nerve injuries: Epidemiological findings, neuropathic pain and quality of life in 158 patients. J Peripher Nerv Syst 15:120–127. https://doi.org/10.1111/j.1529-8027.2010.00260.x

    Article  PubMed  Google Scholar 

  3. Menorca RMG, Fussell TS, Elfar JC (2013) Nerve physiology. Mechanisms of injury and recovery. Hand Clin. 29:317–330

    Article  PubMed  PubMed Central  Google Scholar 

  4. Subhawong TK, Wang KC, Thawait SK et al (2012) High resolution imaging of tunnels by magnetic resonance neurography. Skeletal Radiol 41:15–31. https://doi.org/10.1007/s00256-011-1143-1

    Article  PubMed  Google Scholar 

  5. Burge AJ, Gold SL, Kuong S, Potter HG (2014) High-resolution magnetic resonance imaging of the lower extremity nerves. Neuroimaging Clin. N. Am.

  6. Chhabra A, Andreisek G, Soldatos T et al (2011) MR neurography: past, present, and future. Am J Roentgenol 197:583–591. https://doi.org/10.2214/AJR.10.6012

    Article  Google Scholar 

  7. Chhabra A (2013) Magnetic resonance neurography-simple guide to performance and interpretation. Semin Roentgenol 48:111–125. https://doi.org/10.1053/j.ro.2012.11.004

    Article  PubMed  Google Scholar 

  8. Kamath S, Venkatanarasimha N, Walsh MA, Hughes PM (2008) MRI appearance of muscle denervation. Skeletal Radiol. 37:397–404

    Article  CAS  PubMed  Google Scholar 

  9. Aagaard BD, Lazar DA, Lankerovich L et al (2003) High-resolution magnetic resonance imaging is a noninvasive method of observing injury and recovery in the peripheral nervous system. Neurosurgery. https://doi.org/10.1227/01.NEU.0000069534.43067.28

  10. Kwee RM, Chhabra A, Wang KC et al (2014) Accuracy of MRI in diagnosing peripheral nerve disease: a systematic review of the literature. Am J Roentgenol 203:1303–1309. https://doi.org/10.2214/AJR.13.12403

    Article  Google Scholar 

  11. Chhabra A, Flammang A, Padua A et al (2014) Magnetic resonance neurography: technical considerations. Neuroimaging Clin N Am 24:67–78. https://doi.org/10.1016/j.nic.2013.03.032

    Article  PubMed  Google Scholar 

  12. Hiltunen J, Suortti T, Arvela S et al (2005) Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 116:2315–2323. https://doi.org/10.1016/j.clinph.2005.05.014

    Article  PubMed  Google Scholar 

  13. Bäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193. https://doi.org/10.1148/radiol.14132837

    Article  PubMed  Google Scholar 

  14. Stoll G, Wilder-Smith E, Bendszus M (2013) Imaging of the peripheral nervous system. Handbook of clinical neurology, In, pp 137–153

    Google Scholar 

  15. Bouldin TW, Earnhardt TS, Goines ND (1991) Restoration of blood-nerve barrier in neuropathy is associated with axonal regeneration and remyelination. J Neuropathol Exp Neurol 50:719–728. https://doi.org/10.1097/00005072-199111000-00004

    Article  CAS  PubMed  Google Scholar 

  16. Rossi F, Bignotti B, Bianchi L et al (2020) Radiomics of peripheral nerves MRI in mild carpal and cubital tunnel syndrome. Radiol Medica 125:197–203. https://doi.org/10.1007/s11547-019-01110-z

    Article  Google Scholar 

  17. Tagliafico AS, González RP, Rossi F et al (2020) Peripheral nerves: not only cross-sectional area in the era of radiomics. Semin Musculoskelet Radiol 24:175–180. https://doi.org/10.1055/s-0040-1701629

    Article  PubMed  Google Scholar 

  18. Maas LC (2003) Diffusion tensor imaging: basic principles and emerging clinical applications. Appl Radiol Online 32(Suppl):S49–S57

    Google Scholar 

  19. Khan KA, Jain SK, Sinha VD, Sinha J (2019) Preoperative diffusion tensor imaging: a landmark modality for predicting the outcome and characterization of supratentorial intra-axial brain tumors. World Neurosurg 124:e540–e551. https://doi.org/10.1016/j.wneu.2018.12.146

    Article  Google Scholar 

  20. Martín Noguerol T, Barousse R, Amrhein TJ et al (2020) Optimizing diffusion-tensor imaging acquisition for spinal cord assessment: physical basis and technical adjustments. Radiographics 40:403–427. https://doi.org/10.1148/rg.2020190058

    Article  PubMed  Google Scholar 

  21. Martín Noguerol T, Barousse R, Socolovsky M, Luna A (2017) Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant Imaging Med Surg 7:398–421. https://doi.org/10.21037/qims.2017.08.01

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martín Noguerol T, Barousse R (2020) Update in the evaluation of peripheral nerves by MRI, from morphological to functional neurography. Radiologia 62:90–101. https://doi.org/10.1016/j.rx.2019.06.005

    Article  PubMed  Google Scholar 

  23. Wang H, Ma J, Zhao L et al (2016) Utility of MRI diffusion tensor imaging in carpal tunnel syndrome: a meta-analysis. Med Sci Monit 22:736–742. https://doi.org/10.12659/msm.895758

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Haacke EM, Li J (2019) Peripheral nerve magnetic resonance imaging. F1000Research. https://doi.org/10.12688/f1000research.19695.1

  25. Bruno F, Arrigoni F, Mariani S et al (2019) Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: State of the art and review of the literature. Acta Biomed. 90:68–76

    PubMed  Google Scholar 

  26. Chhabra A, Thakkar RS, Andreisek G et al (2013) Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A3316

  27. Martín Noguerol T, Martínez Barbero JP (2017) RM-Difusión avanzada y biomarcadores en el sistema nervioso central: un nuevo enfoque. Radiologia 59:273–285. https://doi.org/10.1016/j.rx.2017.04.009

    Article  PubMed  Google Scholar 

  28. Martín-Noguerol T, Montesinos P, Barousse R, Luna A (2021) RadioGraphics update: functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiographics. https://doi.org/10.1148/rg.2021200190

  29. Yao L, Gai N (2009) Median nerve cross-sectional area and MRI diffusion characteristics: normative values at the carpal tunnel. Skeletal Radiol 38:355–361. https://doi.org/10.1007/s00256-008-0626-1

    Article  PubMed  Google Scholar 

  30. Carro LP, Hernando MF, Cerezal L et al (2016) Deep gluteal space problems: piriformis syndrome, ischiofemoral impingement and sciatic nerve release. Muscles Ligaments Tendons J 6:384–396. https://doi.org/10.11138/mltj/2016.6.3.384

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martín Noguerol T, Barousse R, Gómez Cabrera M, et al (2019) Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. RadioGraphics 180112. https://doi.org/10.1148/rg.2019180112

  32. Yamasaki T, Fujiwara H, Oda R et al (2015) In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magn Reson Imaging 33:95–101. https://doi.org/10.1016/j.mri.2014.09.005

    Article  PubMed  Google Scholar 

  33. Bikis C, Degrugillier L, Thalmann P et al (2018) Three-dimensional imaging and analysis of entire peripheral nerves after repair and reconstruction. J Neurosci Methods 295. https://doi.org/10.1016/j.jneumeth.2017.11.015

  34. Gallagher TA, Simon NG, Kliot M (2015) Diffusion tensor imaging to visualize axons in the setting of nerve injury and recovery. Neurosurg Focus 39:1–6. https://doi.org/10.3171/2015.6.FOCUS15211

    Article  Google Scholar 

  35. Griffin MF, Malahias M, Hindocha S, Khan WS (2014) Peripheral nerve injury: principles for repair and regeneration. Open Orthop J 8:199–203

    Article  Google Scholar 

  36. Takagi T, Nakamura M, Yamada M et al (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 44:884–892. https://doi.org/10.1016/j.neuroimage.2008.09.022

    Article  PubMed  Google Scholar 

  37. Heckel A, Weiler M, Xia A et al (2015) Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One 10:e0130833. https://doi.org/10.1371/journal.pone.0130833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barcelo C, Faruch M, Lapegue F et al (2013) 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol 23:3124–3130. https://doi.org/10.1007/s00330-013-2955-2

    Article  PubMed  Google Scholar 

  39. Naraghi A, da Gama LL, Menezes R et al (2013) Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. Skeletal Radiol 42:1403–1412. https://doi.org/10.1007/s00256-013-1670-z

    Article  PubMed  Google Scholar 

  40. Ahlawat S, Chhabra A, Blakely J (2014) Magnetic resonance neurography of peripheral nerve tumors and tumorlike conditions. Neuroimaging Clin N Am 24:171–192. https://doi.org/10.1016/j.nic.2013.03.035

    Article  PubMed  Google Scholar 

  41. Mazal AT, Ashikyan O, Cheng J et al (2019) Diffusion-weighted imaging and diffusion tensor imaging as adjuncts to conventional MRI for the diagnosis and management of peripheral nerve sheath tumors: current perspectives and future directions. Eur Radiol 29:4123–4132. https://doi.org/10.1007/s00330-018-5838-8

    Article  PubMed  Google Scholar 

  42. Soldatos T, Fisher S, Karri S et al (2015) Advanced MR imaging of peripheral nerve sheath tumors including diffusion imaging. Semin Musculoskelet Radiol 19:179–190. https://doi.org/10.1055/s-0035-1546823

    Article  PubMed  Google Scholar 

  43. Cage TA, Yuh EL, Hou SW et al (2015) Visualization of nerve fibers and their relationship to peripheral nerve tumors by diffusion tensor imaging. Neurosurg Focus 39:E16. https://doi.org/10.3171/2015.6.FOCUS15235

    Article  PubMed  Google Scholar 

  44. Kobayashi S, Hayakawa K, Nakane T et al (2009) Visualization of intraneural edema using gadolinium-enhanced magnetic resonance imaging of carpal tunnel syndrome. J Orthop Sci 14:24–34. https://doi.org/10.1007/s00776-008-1291-x

    Article  PubMed  Google Scholar 

  45. Lavini C, Buiter MS, Maas M (2013) Use of dynamic contrast enhanced time intensity curve shape analysis in MRI: theory and practice. Reports Med Imaging 6:71–82. https://doi.org/10.2147/RMI.S35088

    Article  Google Scholar 

  46. Hedgire SS, Eberhardt SC, Borczuk R et al (2014) Interpretation and reporting multiparametric prostate MRI: a primer for residents and novices. Abdom Imaging 1–16. https://doi.org/10.1007/s00261-014-0097-x

  47. Ferré J-C, Shiroishi MS, Law M (2012) Advanced techniques using contrast media in neuroimaging. Magn Reson Imaging Clin N Am 20:699–713. https://doi.org/10.1016/j.mric.2012.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  48. Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 17:509–520. https://doi.org/10.1002/jmri.10304

    Article  PubMed  Google Scholar 

  49. Jahng G-H, Li K-L, Ostergaard L, Calamante F (2014) Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 15:554–577. https://doi.org/10.3348/kjr.2014.15.5.554

    Article  PubMed  PubMed Central  Google Scholar 

  50. Subhawong TK, Wilky BA (2015) Value added: functional MR imaging in management of bone and soft tissue sarcomas. Curr. Opin. Oncol. 27:323–331

    Article  CAS  PubMed  Google Scholar 

  51. Kim SH, Lee HS, Kang BJ et al (2016) Dynamic contrast-enhanced MRI perfusion parameters as imaging biomarkers of angiogenesis. PLoS One 11:e0168632. https://doi.org/10.1371/journal.pone.0168632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noguerol TM, Luna A, Cabrera MG, Riofrio AD (2017) Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation. World J Orthop 8:660–673. https://doi.org/10.5312/wjo.v8.i9.660

    Article  Google Scholar 

  53. Lavini C, Buiter MS, Maas M (2013) Use of dynamic contrast enhanced time intensity curve shape analysis in MRI: theory and practice. Reports Med. Imaging 6:71–82

    Article  Google Scholar 

  54. Lavini C, Pikaart BP, de Jonge MC et al (2009) Region of interest and pixel-by-pixel analysis of dynamic contrast enhanced magnetic resonance imaging parameters and time-intensity curve shapes: a comparison in chondroid tumors. Magn Reson Imaging 27:62–68. https://doi.org/10.1016/j.mri.2008.05.012

    Article  PubMed  Google Scholar 

  55. Demehri S, Belzberg A, Blakeley J, Fayad LM (2014) Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. Am J Neuroradiol 35:1615–1620. https://doi.org/10.3174/ajnr.A3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sano Y, Kanda T (2013) Blood-neural barrier: overview and latest progress. Clin Exp Neuroimmunol 4:220–227. https://doi.org/10.1111/cen3.12021

    Article  Google Scholar 

  57. Wasa J, Nishida Y, Tsukushi S et al (2010) MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. Am J Roentgenol 194:1568–1574. https://doi.org/10.2214/AJR.09.2724

    Article  Google Scholar 

  58. Li CS, Huang GS, Da WH et al (2008) Differentiation of soft tissue benign and malignant peripheral nerve sheath tumors with magnetic resonance imaging. Clin Imaging 32:121–127. https://doi.org/10.1016/j.clinimag.2007.05.006

    Article  PubMed  Google Scholar 

  59. Ahlawat S, Blakeley J, Montgomery E et al (2013) Schwannoma in neurofibromatosis type 1: a pitfall for detecting malignancy by metabolic imaging. Skeletal Radiol. https://doi.org/10.1007/s00256-013-1626-3

  60. Fayad LM, Jacobs MA, Wang X et al (2012) Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology

  61. Bäumer P, Reimann M, Decker C et al (2014) Peripheral nerve perfusion by dynamic contrast-enhanced magnetic resonance imaging: demonstration of feasibility. Invest Radiol 49:518–523. https://doi.org/10.1097/RLI.0000000000000046

    Article  CAS  PubMed  Google Scholar 

  62. Rydevik B, Lundborg G (1977) Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression. Scand J Plast Reconstr Surg Hand Surg 11:179–187. https://doi.org/10.3109/02844317709025516

    Article  CAS  Google Scholar 

  63. Campagna R, Pessis E, Feydy A et al (2009) MRI assessment of recurrent carpal tunnel syndrome after open surgical release of the median nerve. Am J Roentgenol 193:644–650. https://doi.org/10.2214/AJR.08.1433

    Article  Google Scholar 

  64. Sunderland S (1947) Rate of regeneration of sensory nerve fibers. Arch Neurol Psychiatry 58:1–6. https://doi.org/10.1001/archneurpsyc.1947.02300300011001

    Article  CAS  PubMed  Google Scholar 

  65. Omura K, Ohbayashi M, Sano M et al (2004) The recovery of blood-nerve barrier in crush nerve injury - a quantitative analysis utilizing immunohistochemistry. Brain Res 1001:13–21. https://doi.org/10.1016/j.brainres.2003.10.067

    Article  CAS  PubMed  Google Scholar 

  66. Hill BJ, Padgett KR, Kalra V et al (2018) Gadolinium DTPA enhancement characteristics of the rat sciatic nerve after crush injury at 4.7T. Am J Neuroradiol 39:177–183. https://doi.org/10.3174/ajnr.A5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wessig C (2011) Detection of blood-nerve barrier permeability by magnetic resonance imaging. Methods Mol Biol 686:267–271. https://doi.org/10.1007/978-1-60761-938-3_12

    Article  CAS  PubMed  Google Scholar 

  68. Martín Noguerol T, Paulano-Godino F, Martín-Valdivia MT et al (2019) Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol 16:1239–1247. https://doi.org/10.1016/j.jacr.2019.05.047

    Article  PubMed  Google Scholar 

  69. Hirschmann A, Cyriac J, Stieltjes B et al (2019) Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol 23:304–311. https://doi.org/10.1055/s-0039-1684024

    Article  PubMed  Google Scholar 

  70. Shin Y, Yang J, Lee YH, Kim S (2021) Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography

  71. Saba L, Biswas M, Kuppili V, et al (2019) The present and future of deep learning in radiology. Eur. J. Radiol.

  72. Zhao H, Sun N (2017) Improved U-net model for nerve segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  73. Liu C, Liu F, Wang L et al (2018) Segmentation of nerve on ultrasound images using deep adversarial network. Int J Innov Comput Inf Control.

  74. Bowness J, El-Boghdadly K, Burckett-St Laurent D (2020) Artificial intelligence for image interpretation in ultrasound-guided regional anaesthesia. Anaesthesia. https://doi.org/10.1111/anae.15212

  75. Huang C, Zhou Y, Tan W et al (2019) Applying deep learning in recognizing the femoral nerve block region on ultrasound images. Ann Transl Med. https://doi.org/10.21037/atm.2019.08.61

  76. Balsiger F, Steindel C, Arn M et al (2018) Segmentation of peripheral nerves from magnetic resonance neurography: a fully-automatic, deep learning-based approach. Front Neurol 9:1–9. https://doi.org/10.3389/fneur.2018.00777

    Article  Google Scholar 

  77. Haralick RM, Dinstein I, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

  78. Tagliafico AS, Tagliafico G (2014) Fascicular ratio: a new parameter to evaluate peripheral nerve pathology on magnetic resonance imaging: a feasibility study on a 3T MRI system. Med (United States) 93. https://doi.org/10.1097/MD.0000000000000068

  79. Tagliafico AS., Rossi F., Valdora F., Grandis M. , Benedetti L., Bignotti B. SA (2019) Feasibility of imaging phenotyping (radiomics) on nuclear MRI of major lower limb nerves. G Ital di Radiol Medica 25–20

Download references

Author information

Authors and Affiliations

Authors

Contributions

Martín-Noguerol T, designed this work; Martín-Noguerol T, Barousse R and Socolovsky M collected the data, Martín-Noguerol T, Barousse R, Luna A, Socolovsky M, Górriz JM, and Gómez-Río M drafted and critically revised the work.

Corresponding author

Correspondence to Teodoro Martín-Noguerol.

Ethics declarations

Conflict of interest

The author declares a conflict of interest.

Antonio Luna, MD, Ph.D. is occasional lecturer of Philips, Siemens Healthineers, Bracco and Canon and receives royalties as book editor from Springer-Verlag.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The online version of the article contains an error. Figure 4 was accidentally replaced during correction stage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Noguerol, T., Barousse, R., Luna, A. et al. New insights into the evaluation of peripheral nerves lesions: a survival guide for beginners. Neuroradiology 64, 875–886 (2022). https://doi.org/10.1007/s00234-022-02916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-02916-x

Keywords

Navigation