Skip to main content
Log in

Structural Changes in a Macrozoobenthos Assemblage After Imidacloprid Pulses in Aquatic Field-Based Microcosms

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A field-based microcosm experiment was performed to investigate the effects of repeated pulses of the neonicotinoid insecticide imidacloprid on a lentic benthos assemblage. This specific microcosm method was chosen because it allows for both testing of a wide range of organisms under natural conditions and as well as gaining insight into intraspecific and interspecific interactions. The macrozoobenthos that colonised the microcosms was exposed to three pulses each 1 week apart at nominal concentrations ranging from 0.6 to 40 μg/L. Imidacloprid underwent fast aqueous photolysis due to optimal sunlight conditions during the test phase (half-life = 28 ± 8 h [monitored for 21 days]). Nonetheless, decreased abundance and emergence of Ephemeroptera and decreased survival of chironomid species of the subfamilies Tanypodinae and Orthocladiinae were observed at time-weighted average concentrations of 2.3 μg/L. In contrast, the gastropod Radix sp. became dominant at high imidacloprid concentrations, probably due to decreased competition for food with sensitive species. The results of this study show that repeated short-term contamination of imidacloprid at low concentration levels may affect aquatic ecosystems even under optimal conditions for photodegradation. The microcosm approach, with its simple and field-relevant design, proved to be a useful tool for assessing the effects of imidacloprid contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander AC, Culp JM, Liber K, Cessna AJ (2007) Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes. Environ Toxicol Chem 26(8):1726–1732

    Article  CAS  Google Scholar 

  • Armbrust KL, Peeler HB (2002) Effects of formulation on the run-off of imidacloprid from turf. Pestic Manage Sci 58(7):702–706

    Article  CAS  Google Scholar 

  • Armitage PD, Cranston PS, Pinder LCV (1995) The Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, London

    Google Scholar 

  • Ashauer R, Hintermeister A, O’Connor I, Elumelu M, Hollender J, Escher BI (2012) Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex. Environ Sci Technol 46(6):3498–3508

    Article  CAS  Google Scholar 

  • Berghahn R, Mohr S, Hubner V, Schmiediche R, Schmiedling I, Svetich-Will E, Schmidt R (2012) Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquat Toxicol 122:56–66

    Article  Google Scholar 

  • Buckingham S, Lapied B, Corronc H, Sattelle F (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Evol Biol 200:2685–2692

    CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines: Imidacloprid. Scientific Supporting Document. Winnipeg, Manitoba, Canada

  • Cucker BE (1983) Competition and coexistence among the grazing snail Lymnea, Chironomidae and microcrustaceans. Ecology 64:10–15

    Article  Google Scholar 

  • Forbes TL, Forbes VE (1993) A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct Ecol 7(3):249–254

    Article  Google Scholar 

  • Goedkoop Sonesten, Markensten Ahlgren (1998) Fatty acid biomarkers show dietary differences between dominant chironomid taxa in Lake Erken. Freshwater Biol 40(1):135–143

    Article  CAS  Google Scholar 

  • Handy RD (1994) Intermittent exposure to aquatic pollutants—Assessment, toxicity and sublethal responses in fish and invertebrates. Comp Biochem Physiol C 107(2):171–184

    Google Scholar 

  • Hayasaka D, Korenaga T, Suzuki K, Saito F, Sanchez-Bayo F, Goka K (2012) Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Safe 80:355–362

    Article  CAS  Google Scholar 

  • Höcker B (2001) Biozönotische Typisierung und ökotoxikologische Untersuchungen an zwei kleinen bayerischen Fließgewässern, vol 96. Bayerisches Landesamt für Wasserwirtschaft, Materialien

    Google Scholar 

  • Jonckheere A (1954) A distribution-free k-sample test against ordered alternatives. Biometrika 41(1/2):133–145

    Article  Google Scholar 

  • Knabel A, Stehle S, Schafer RB, Schulz R (2012) Regulatory FOCUS surface water models fail to predict insecticide concentrations in the field. Environ Sci Technol 46(15):8397–8404

    Article  Google Scholar 

  • Lamers M, Anyusheva M, La N, Nguyen VV, Streck T (2011) Pesticide pollution in surface-and groundwater by paddy rice cultivation: a case study from northern Vietnam. CLEAN–Soil air. Water 39(4):356–361

    CAS  Google Scholar 

  • Liess M, Schulz R, Liess MHD, Rother B, Kreuzig R (1999) Determination of insecticide contamination in agricultural headwater streams. Water Res 33(1):239–247

    Article  CAS  Google Scholar 

  • Liu MY, Casida JE (1993) High affinity binding of [3H] imidacloprid in the insect acethylcholine receptor. Pestic Biochem Physiol 46:40–46

    Article  CAS  Google Scholar 

  • MacDonald LM, Meyer TR (1998) Determination of imidacloprid and triadimefon in white pine by gas chromatography/mass spectrometry. J Agric Food Chem 46(8):3133–3138

    Article  CAS  Google Scholar 

  • Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinodis: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580

    Article  CAS  Google Scholar 

  • Mohr S, Berghahn R, Feibicke M, Meinecke S, Ottenströer T, Schmiedling I et al (2007) Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms. Aquat Toxicol 82(2):73–84

    Article  CAS  Google Scholar 

  • Mohr S, Berghahn R, Schmiediche R, Hubner V, Loth S, Feibicke M et al (2012) Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquat Toxicol 110:25–36

    Article  Google Scholar 

  • Moza PN, Hustert K, Feicht E, Kettrup A (1998) Photolysis of imidacloprid in aqueous solution. Chemosphere 36(3):497–502

    Article  CAS  Google Scholar 

  • Neumann M, Schulz R, Schafer K, Muller W, Mannheller W, Liess M (2002) The significance of entry routes as point and non-point sources of pesticides in small streams. Water Res 36(4):835–842

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2008) Guidelines for the testing of chemicals, test no. 211: Daphnia magna reproduction test, section 2. OECD Publishing. doi:10.1787/9789264070127-en

  • Pestana JLT, Loureiro S, Baird DJ, Soares A (2009) Fear and loathing in the benthos: responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquat Toxicol 93(2–3):138–149

    Article  CAS  Google Scholar 

  • Pettigrove V, Hoffmann A (2005) A field-based microcosm method to assess the effects of polluted urban stream sediments on aquatic macroinvertebrates. Environ Toxicol Chem 24(1):170–180

    Article  CAS  Google Scholar 

  • Phillips PJ, Bode RW (2004) Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Pestic Manag Sci 60(6):531–543

    Article  CAS  Google Scholar 

  • Roessink I, Merga LB, Zweers HJ, Van den Brink PJ (2013) The neonicotinoid imidacloprid shows high chronic toxicity to mayfly nymphs. Environ Toxicol Chem 32(5):1096–1100

    Article  CAS  Google Scholar 

  • Sánchez-Bayo F, Goka K (2006) Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Aquat Toxicol 78(3):262–271

    Article  Google Scholar 

  • Starner K, Goh KS (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull Environ Contam Toxicol 88(3):316–321

    Article  CAS  Google Scholar 

  • Stoughton SJ, Liber K, Culp J, Cessna A (2008) Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol 54(4):662–673

    Article  CAS  Google Scholar 

  • Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20(11):2482–2486

    CAS  Google Scholar 

  • Tennekes HA (2010) The significance of the Druckrey–Kupfmuller equation for risk assessment—The toxicity of neonicotinoid insecticides to arthropods is reinforced by exposure time. Toxicology 276(1):1–4

    Article  CAS  Google Scholar 

  • Tennekes HA, Sanchez-Bayo F (2011) Time-dependent toxicity of neonicotinoids and other toxicants: Implications for a new approach to risk assessment. J Environ Anal Toxicol

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302

    Article  CAS  Google Scholar 

  • Tomizawa M, Lee DL, Casida JE (2000) Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J Agric Food Chem 48(12):6016–6024

    Article  CAS  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual, 12th edn. British Crop Protection Council, Surrey

    Google Scholar 

  • Wamhoff H, Schneider V (1999) Photodegradation of imidacloprid. J Agric Food Chem 47(4):1730–1734

    Article  CAS  Google Scholar 

  • Zheng W, Liu WP (1999) Kinetics and mechanism of the hydrolysis of imidacloprid. Pestic Sci 55(4):482–485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the entire team of the UBA unit IV 2.5 especially to S. Loth and S. Meinecke and the analytical section for their kind support. A. Günther, J. Schott, and K. Grohmann are acknowledged for assistance during field work and sampling. We also thank C. Knowles and two anonymous reviewers for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, V., Mohr, S., Berghahn, R. et al. Structural Changes in a Macrozoobenthos Assemblage After Imidacloprid Pulses in Aquatic Field-Based Microcosms. Arch Environ Contam Toxicol 65, 683–692 (2013). https://doi.org/10.1007/s00244-013-9940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9940-2

Keywords

Navigation