Skip to main content
Log in

Perspectives on Characteristics Based Curse-of-Dimensionality-Free Numerical Approaches for Solving Hamilton–Jacobi Equations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper extends the considerations of the works (Darbon and Osher, Res Math Sci 3:19, 2016; Chow et al., 2017, arxiv.org/abs/1704.02524) regarding curse-of-dimensionality-free numerical approaches to solve certain types of Hamilton–Jacobi equations arising in optimal control problems, differential games and elsewhere. A rigorous formulation and justification for the extended Hopf–Lax formula of(Chow et al., 2017, arxiv.org/abs/1704.02524) is provided together with novel theoretical and practical discussions including useful recommendations. By using the method of characteristics, the solutions of some problem classes under convexity/concavity conditions on Hamiltonians (in particular, the solutions of Hamilton–Jacobi–Bellman equations in optimal control problems) are evaluated separately at different initial positions. This allows for the avoidance of the curse of dimensionality, as well as for choosing arbitrary computational regions. The corresponding feedback control strategies are obtained at selected positions without approximating the partial derivatives of the solutions. The results of numerical simulations demonstrate the high potential of the proposed techniques. It is also pointed out that, despite the indicated advantages, the related approaches still have a limited range of applicability, and their extensions to Hamilton–Jacobi–Isaacs equations in zero-sum two-player differential games are currently developed only for sufficiently narrow classes of control systems. These extensions require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Darbon, J., Osher, S.: Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere. Res. Math. Sci. 3, 19 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Chow, Y.T., Darbon, J., Osher, S., Yin, W.: Algorithm for overcoming the curse of dimensionality for state-dependent Hamilton–Jacobi equations. 2017. arxiv.org/abs/1704.02524

  3. Subbotin, A.I.: Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective. Birkhauser, Boston (1995)

    Google Scholar 

  4. Melikyan, A.A.: Generalized Characteristics of First Order PDEs: Application in Optimal Control and Differential Games. Birkhauser, Boston (1998)

    MATH  Google Scholar 

  5. Yong, J., Zhou, XYu.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    MATH  Google Scholar 

  6. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (2006)

    MATH  Google Scholar 

  7. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (2008)

    MATH  Google Scholar 

  8. Yong, J.: Differential Games: A Concise Introduction. World Scientific Publishing, Singapore (2015)

    MATH  Google Scholar 

  9. Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43, 1–19 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Osher, S., Shu, C.-W.: High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Jiang, G., Peng, D.P.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24(3), 1005–1030 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48, 4292–4316 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Bokanowski, O., Cristiani, E., Zidani, H.: An efficient data structure and accurate scheme to solve front propagation problems. J. Sci. Comput. 42(2), 251–273 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Bokanowski, O., Desilles, A., Zidani, H., Zhao, J.: User’s guide for the ROC-HJ solver: Reachability, Optimal Control, and Hamilton–Jacobi equations. Version 2.3 (10 May 2017). http://uma.ensta-paristech.fr/soft/ROC-HJ/

  16. Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Falcone, M.: Numerical methods for differential games based on partial differential equations. Int. Game Theory Rev. 8, 231–272 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the Eikonal equation and applications. SIAM J. Numer. Anal. 45, 1979–2011 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Osher, S.: A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J. Math. Anal. 24(5), 1145–1152 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  22. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  23. Mitchell, I., Bayen, A., Tomlin, C.: Computing reachable sets for continuous dynamic games using level set methods. 2002. http://hybrid.stanford.edu/~bayen/publications.html

  24. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

  25. Mitchell, I.: A Toolbox of Level Set Methods. Department of Computer Science, University of British Columbia (2012). http://www.cs.ubc.ca/~mitchell/ToolboxLS

  26. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  27. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  28. McEneaney, W.M.: Max-Plus Methods in Nonlinear Control and Estimation. Birkhauser, Boston (2006)

    MATH  Google Scholar 

  29. McEneaney, W.M.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control Optim. 46(4), 1239–1276 (2007)

    MathSciNet  MATH  Google Scholar 

  30. McEneaney, W.M., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs. In: Proceedings of the 2008 American Control Conference, pp. 4684–4690 (2008)

  31. McEneaney, W.M., Kluberg, J.: Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs. SIAM J. Control Optim. 48(5), 3052–3079 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Gaubert, S., McEneaney, W.M., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms. In: Proceedings of the 50th IEEE Conference on Decision and Control, pp. 1054–1061 (2011)

  33. Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47(2), 817–848 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Kaise, H., McEneaney, W.M.: Idempotent expansions for continuous-time stochastic control: compact control space. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 7015–7020 (2010)

  35. Akian, M., Fodjo, E.: A probabilistic max-plus numerical method for solving stochastic control problems. In: Proceedings of the 55th IEEE Conference on Decision and Control (2016). https://doi.org/10.1109/CDC.2016.7799411

  36. Kang, W., Wilcox, L.C.: Mitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equations. Comput. Optim. Appl. 68(2), 289–315 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Hopf, E.: Generalized solutions of nonlinear equations of first order. J. Math. Mech. 14, 951–973 (1965)

    MathSciNet  MATH  Google Scholar 

  38. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society (1998)

  39. Rublev, I.V.: Generalized Hopf formulas for the nonautonomous Hamilton-Jacobi equation. Comput. Math. Model. 11(4), 391–400 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Evans, L.C.: Envelopes and nonconvex Hamilton-Jacobi equations. Calc. Var. Partial Differ. Equ. 50(1–2), 257–282 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Mirică, S.: Extending Cauchy’s method of characteristics for Hamilton-Jacobi equations. Stud. Cercet. Mat. 37(6), 555–565 (1985)

    MathSciNet  Google Scholar 

  42. Subbotina, N.N.: Method of Cauchy characteristics and generalized solutions of Hamilton-Jacobi-Bellman equations. Dokl. AN SSSR 320, 556–561 (1991). (in Russian)

    Google Scholar 

  43. Subbotina, N.N.: Necessary and Sufficient Optimality Conditions in Terms of Characteristics of the Hamilton–Jacobi–Bellman Equation. Report 393. Institut für Angewandte Mathematik und Statistic, Universität Würzburg, Würzburg (1992)

  44. Subbotina, N.N.: The method of characteristics for Hamilton-Jacobi equations and applications to dynamical optimization. J. Math. Sci. 135(3), 2955–3091 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Subbotina, N.N., Tokmantsev, T.B.: On the efficiency of optimal grid synthesis in optimal control problems with fixed terminal time. Differ. Equ. 45, 1686–1697 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Subbotina, N.N., Tokmantsev, T.B.: Estimating error of the optimal grid design in the problems of nonlinear optimal control of prescribed duration. Autom. Remote Control 70(9), 1565–1578 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Subbotina, N.N., Kolpakova, E.A.: On the structure of locally Lipschitz minimax solutions of the Hamilton-Jacobi-Bellman equation in terms of classical characteristics. Proc. Steklov Inst. Math. 268(suppl. 1), 222–239 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  49. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM Publications, Philadelphia (1974)

    MATH  Google Scholar 

  50. Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Macmillan, New York (1964)

    Google Scholar 

  51. Markley, N.G.: Principles of Differential Equations. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  52. Blagodatskikh, V.I., Filippov, A.F.: Differential inclusions and optimal control. Proc. Steklov Inst. Math. 169, 199–259 (1986)

    MATH  Google Scholar 

  53. Krasovskii, N.N., Subbotin, A.I.: Positional Differential Games. Nauka, Moscow (1974). (in Russian)

    MATH  Google Scholar 

  54. Subbotin, A.I., Chentsov, A.G.: Optimization of Guaranteed Result in Control Problems. Nauka, Moscow (1981). (in Russian)

    Google Scholar 

  55. Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)

    Google Scholar 

  56. Berkovitz, L.D.: The existence of value and saddle point in games of fixed duration. SIAM J. Control Optim. 23(2), 172–196 (1985)

    MathSciNet  MATH  Google Scholar 

  57. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Academic, New York (1995)

    MATH  Google Scholar 

  58. Bernhard, P.: Singular surfaces in differential games: an introduction. In: Hagedorn, P., Knobloch, H.W., Olsder, G.J. (eds.) Differential Games and Applications, Series Lecture Notes in Control and Information Sciences, vol. 3, pp. 1–33. Springer, Berlin (1977)

    Google Scholar 

  59. Bernhard, P.: Pursuit-evasion games and zero-sum two-person differential games. In: Encyclopedia of Systems and Control, pp. 1–7 (2014). https://doi.org/10.1007/978-1-4471-5102-9_270-1

  60. Melikyan, A., Bernhard, P.: Geometry of optimal trajectories around a focal singular surface in differential games. Appl. Math. Optim. 52, 23–37 (2005)

    MathSciNet  MATH  Google Scholar 

  61. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  62. Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB. Springer, London (2009)

    Google Scholar 

  63. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1995)

    MATH  Google Scholar 

  64. Carletti, M.: Numerical solution of stochastic differential problems in the biosciences. J. Comput. Appl. Math. 185(2), 422–440 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by AFOSR/AOARD Grant FA2386-16-1-4066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yegorov.

Additional information

I. Yegorov—Also known as Egorov.

Appendix

Appendix

Let us introduce one more class of differential games for which a single programmed iteration is enough to reach the closed-loop game value. The corresponding result was derived in [54, §V.2].

Consider the linear differential game (92), (90) under Assumptions 4.24.6. In addition to the notations presented in the introduction and Sect. 4, adopt that

$$\begin{aligned}&\Vert y \Vert _j^0 \, {\mathop {=}\limits ^{\mathrm {def}}} \, \max \limits _{i \in \{1, \,2, \ldots , j\}} |y_i|, \quad \Vert y \Vert _j^1 \, {\mathop {=}\limits ^{\mathrm {def}}} \, \sum \limits _{i = 1}^j |y_i|, \nonumber \\&\mathcal {B}_j^0(y,\, \varepsilon ) \, {\mathop {=}\limits ^{\mathrm {def}}} \, \left\{ v \in \mathbb {R}^j \, :\, \Vert v - y \Vert _j^0 \leqslant \varepsilon \right\} \end{aligned}$$
(133)

for all \( j \in \mathbb {N} ,\) \( y = (y_1,\, y_2, \ldots , y_j) \in \mathbb {R}^j \) and \( \varepsilon \geqslant 0 .\) Several more conditions are imposed.

Assumption A.1

There exist a vector \( y_0 \in \mathbb {R}^k ,\) numbers \( r \in [0, \,+\infty ) ,\) \( \bar{r} \in [0,\, +\infty ) \) and continuous functions

$$\begin{aligned}&\hat{y} \, :\, [0,\, T] \rightarrow \mathbb {R}^k, \quad \hat{z} \, :\, [0,\, T] \rightarrow \mathbb {R}^k, \\&h_1 \, :\, [0,\, T] \rightarrow [0,\, +\infty ), \quad h_{21} \, :\, [0,\, T] \rightarrow [0,\, +\infty ), \\&h_{22} \, :\, [0,\, T] \rightarrow [0,\, +\infty ), \end{aligned}$$

such that the set \( \mathcal {M} \) from Assumption 4.6 is determined by

$$\begin{aligned} \mathcal {M} = y_0 + \mathcal {B}_k^0(O_k,\, r) + \mathcal {B}_k(O_k,\, \bar{r}) \end{aligned}$$
(134)

and, for all \( t \in [0,\, T] ,\) \( l \in L_k, \) one has

$$\begin{aligned}&\{ \varPhi (T,\, t) \, B_1(t) \, U_1(t) \}_k = \mathcal {B}^0_k \left( \hat{y}(t), \, h_1(t) \right) , \nonumber \\&\int \limits _t^T \max \limits _{u_2 \in U_2} \left\langle l, \, \{ \varPhi (T, \,\xi ) \, B_2(\xi ) \, u_2 \}_k \right\rangle \, d \xi = h_{21}(t) + h_{22}(t) \, \Vert l \Vert ^1_k + \langle l, \, \hat{z}(t) \rangle , \nonumber \\&h_{22}(t) \leqslant \int \limits _t^T h_1(\xi ) \, d \xi + r. \end{aligned}$$
(135)

Denote also

$$\begin{aligned} h_3(t) \, {\mathop {=}\limits ^{\mathrm {def}}} \, \int \limits _t^T h_1(\xi ) \, d \xi + r - h_{22}(t) \quad \forall t \in [0, \,T]. \end{aligned}$$
(136)

The sought-after result can now be formulated.

Theorem A.2

[54, §V.2] Under Assumptions 4.2, 4.6, A.1, the closed-loop game value for (92), (90) at any position \( (t_0,\, x_0) \in [0,\, T] \times \mathbb {R}^n \) is represented as

$$\begin{aligned} V(t_0,\, x_0) = \max \, \left\{ V^*(t_0,\, x_0), \, \max \limits _{t \in [t_0,\, T]} \, \{ h_{21}(t) - h_3(t) \} - \bar{r} \right\} , \end{aligned}$$
(137)

where \( V^* \) is the programmed maximin function specified in Proposition 4.7.

Theorem A.2 can be applied in the two subsequent examples.

Example A.3

[54, §V.2] Consider the problem that appears from the game of Example 4.10 just by replacing \( U_1 = \mathcal {B}_2(O_2,\, a_1) \) with \( U_1 = \mathcal {B}^0_2(O_2,\, a_1) .\) Then the closed-loop game value function is also represented as in (113), but the programmed maximin function \( V^* \) is now different. \(\square \)

Example A.4

[54, §V.2] For the game

$$\begin{aligned} \left\{ \begin{array}{l} \dot{x}_1(t) = x_3(t) + v_1(t), \\ \dot{x}_2(t) = x_4(t) + v_2(t), \\ \dot{x}_3(t) = -\alpha \, x_3(t) + u_1(t) + v_3(t), \\ \dot{x}_4(t) = -\alpha \, x_4(t) + u_2(t) + v_4(t), \\ x(t) = (x_1(t), \, x_2(t), \, x_3(t), \, x_4(t))^{\top } \in \mathbb {R}^4, \\ u(t) = (u_1(t), \, u_2(t))^{\top } \in U_1 = \mathcal {B}^0_2 ( \omega ^0, \,a ), \\ v(t) = (v_1(t), \, v_2(t), \, v_3(t), \, v_4(t))^{\top } \\ \quad \in U_2 = (-\mathcal {B}_2(\omega _*, \,b_*)) \times \mathcal {B}^0_2(\omega ^*, \,b^*), \\ \alpha> 0, \, b_* \geqslant 0, \, b^* \geqslant 0, \, a \geqslant b^* \, \text{ are } \text{ scalar } \text{ constants }, \\ \omega ^0, \, \omega _*, \, \omega ^* \, \text{ are } \text{ constant } \text{ vectors } \text{ in } \mathbb {R}^2 , \\ t \in [0,\, T], \, T > 0 \text{ is } \text{ fixed }, \\ k = 2, \, \mathcal {M} = \{ O_2 \}, \\ \sigma (x(T)) = \Vert \{ x(T) \}_2 \Vert _2 = \sqrt{x_1^2(T) + x_2^2(T)} \\ \qquad \qquad \qquad \qquad \quad \longrightarrow \inf _{u(\cdot )} \, \sup _{v(\cdot )} \, \text{ or } \, \sup _{v(\cdot )} \, \inf _{u(\cdot )} , \end{array} \right. \end{aligned}$$
(138)

Theorem A.2 leads to the representation

$$\begin{aligned} \begin{aligned}&V \left( t_0, \, x^0 \right) = \max \, \left\{ V^* \left( t_0, \, x^0 \right) , \, \max \limits _{t \in [t_0,\, T]} \{ (T - t) \, b_* - R_{\alpha }(T,\, t) \, (a - b^*) \} \right\} \\&\forall \, \left( t_0, \, x^0 \right) \in [0,\, T] \times \mathbb {R}^4, \end{aligned} \end{aligned}$$
(139)

where \( R_{\alpha } \) is defined as in (116) and \( V^* \) is determined according to Proposition 4.7. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yegorov, I., Dower, P.M. Perspectives on Characteristics Based Curse-of-Dimensionality-Free Numerical Approaches for Solving Hamilton–Jacobi Equations. Appl Math Optim 83, 1–49 (2021). https://doi.org/10.1007/s00245-018-9509-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9509-6

Keywords

Mathematics Subject Classification

Navigation