Skip to main content
Log in

Porous-elastic Plates: Fourier Versus Type III

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we investigate the time decay of the solutions for a thermoelastic plate with voids in the cases when the heat conduction is modeled by the Fourier law and when it is modeled by the type III theory (with and without the inertial term). In all situations we show that, in general, the strong stability holds. In particular, we show slow decay of solutions for the Fourier case, that is, the solutions do not decay exponentially to zero (in general). However, if the coefficients satisfy a new relationship involving the inertial coefficient (singular case), we characterize the exponential decay of solutions. On the other hand, for the type III theory the situation is very different and we prove that generically the solutions decay to zero exponentially. This is another striking aspect when we compare both theories. This difference is a consequence of the couplings appearing in the type III case which are not present in the case of the Fourier law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apalara, T.A.: Exponential decay in one-dimensional porous dissipation elasticity. J. Mech. Appl. Math. 70, 363–372 (2017)

    Article  MathSciNet  Google Scholar 

  2. Apalara, T.A.: General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 469, 457–471 (2019)

    Article  MathSciNet  Google Scholar 

  3. Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system with free boundary condition without mechanical dissipation. SIAM J. Math. Anal. 29, 155–182 (1998)

    Article  MathSciNet  Google Scholar 

  4. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroup. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  5. Casas, P., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43, 33–47 (2005)

    Article  MathSciNet  Google Scholar 

  6. Casas, P., Quintanilla, R.: Exponential decay in one-dimensional porous-thermoelasticity. Mech. Res. Commun. 32, 652–658 (2005)

    Article  Google Scholar 

  7. Chueshov, I., Lasiecka, I.: Attractors and long time behavior of von Karman thermoelastic plates. Appl. Math. Optim. 58, 195–241 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cowin, S.C.: The viscoelastic behavior of linear elastic materials with voids. J. Elast. 15, 185–191 (1985)

    Article  Google Scholar 

  9. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  Google Scholar 

  10. Dell’Oro, F., Pata, V.: Lack of exponential stability of Timoshenko systems with flat memory kernels. Appl. Math. Optim. 71, 79–93 (2015)

    Article  MathSciNet  Google Scholar 

  11. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Feng, B.: Uniform decay of energy for porous thermoelastic system with past history. Appl. Anal. 97, 210–229 (2018)

    Article  MathSciNet  Google Scholar 

  13. Feng, B.: On the decay for a one-dimensional porous elasticity with past history. Commun. Pure Appl. Anal. 18, 2905–2921 (2019)

    Article  MathSciNet  Google Scholar 

  14. Feng, B., Apalara, T.A.: Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 470, 1108–1128 (2019)

    Article  MathSciNet  Google Scholar 

  15. Feng, B., Yin, M.: Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds. Math. Mech. Solids 24, 2361–2373 (2019)

    Article  MathSciNet  Google Scholar 

  16. Fernández Sare, H.D., Muñoz Rivera, J.: Stability from Timoshenko systems with past history. J. Math. Anal. Appl. 339, 482–502 (2008)

    Article  MathSciNet  Google Scholar 

  17. Fernández Sare, H.D., Muñoz Rivera, J.: Optimal rates of decay of thermoelastic plates with second sound. J. Math. Phys. 53, 073509 (2012)

    Article  MathSciNet  Google Scholar 

  18. Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Rat. Mech. Anal. 194, 221–251 (2009)

    Article  MathSciNet  Google Scholar 

  19. Fernández Sare, H.D., Liu, Z., Racke, R.: Stability of abstract thermoelastic system with inertial terms. J. Differ. Equ. 267, 7084–7134 (2019)

    Article  MathSciNet  Google Scholar 

  20. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Thermal Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  21. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  22. Green, A.E., Naghdi, P.M.: A verified procedure for construction of theories of deformable media. I. Classical continuum physics. II. Generalized continua. III. Mixtures of interacting continua. Proc. R. Soc. Lond. A 448, 335–356 (1995)

    Article  Google Scholar 

  23. Leseduarte, M.C., Magaña, A., Quintanilla, R.: On the time decay of solutions in porous-thermo-elasticity of type II. Discret. Cont. Dyn. Syst. B 13, 375–391 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems \(\pi \). Research Notes Mathematics. Chapman & Hall, Boca Raton (1999)

    Google Scholar 

  25. Magaña, A., Quintanilla, R.: On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptotic Anal. 49, 173–187 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Magaña, A., Quintanilla, R.: On the time decay of solutions in porous-elasticity with quasi-static microvoids. J. Math. Anal. Appl. 331, 617–630 (2007)

    Article  MathSciNet  Google Scholar 

  27. Magaña, A., Quintanilla, R.: Exponential stability in type III thermoelasticity with microtemperatures. ZAMP Z. Angew. Math. Phys. 69(5), 129(1)–129(8) (2018)

    MathSciNet  MATH  Google Scholar 

  28. Magaña, A., Quintanilla, R.: Exponential stability in three-dimensional type III thermo-porous-elasticity with microtemperatures. J. Elast. 139, 153–161 (2020)

    Article  MathSciNet  Google Scholar 

  29. Magaña, A., Miranville, A., Quintanilla, R.: Exponential decay of solutions in type II porous-thermo-elasticity with quasi-static microvoids. J. Math. Anal. Appl. 492, 124504 (2020)

    Article  MathSciNet  Google Scholar 

  30. Miranville, A., Quintanilla, R.: Exponential decay in one-dimensional type III thermoelasticity with voids. Appl. Math. Lett. 94, 30–37 (2019)

    Article  MathSciNet  Google Scholar 

  31. Miranville, A., Quintanilla, R.: Exponential decay in one-dimensional type II thermoviscoelasticity with voids. J. Comput. Appl. Math. 368, 112573 (2020)

    Article  MathSciNet  Google Scholar 

  32. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72, 175–201 (1979)

    Article  MathSciNet  Google Scholar 

  33. Pamplona, P.X., Muñoz Rivera, J., Quintanilla, R.: On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 379, 682–705 (2011)

    Article  MathSciNet  Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  35. Prüss, J.: On the spectrum of \(C_0\)-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984)

    Article  Google Scholar 

  36. Quintanilla, R.: Moore-Gibson–Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  37. Soufyane, A.: Energy decay for porous thermo-elastic systems of memory type. Appl. Anal. 87, 451–464 (2007)

    Article  MathSciNet  Google Scholar 

  38. Yang, X.-G., Zhang, J., Lu, Y.: Dynamics of the nonlinear Timoshenko system with variable delay. Appl. Math. Optim. 83, 297–326 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Quintanilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of R. Quintanilla is supported by the Ministerio de Ciencia, Innovación y Universidades under the research project “Análisis matemático aplicado a la termomecánica” (Ref. PID2019-105118GB-I00)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández Sare, H.D., Quintanilla, R. Porous-elastic Plates: Fourier Versus Type III. Appl Math Optim 84 (Suppl 1), 1055–1085 (2021). https://doi.org/10.1007/s00245-021-09793-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09793-5

Keywords

Mathematics Subject Classification

Navigation