Skip to main content

Advertisement

Log in

Impact of Fungicides on the Diversity and Function of Non-target Ammonia-Oxidizing Microorganisms Residing in a Litter Soil Cover

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Litter soil cover constitutes an important micro-ecosystem in sustainable viticulture having a key role in nutrient cycling and serving as a habitat of complex microbial communities. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are known to regulate nitrification in soil while little is known regarding their function and diversity in litter. We investigated the effects of two fungicides, penconazole and cyprodinil, commonly used in vineyards, on the function and diversity of total and active AOB and AOA in a microcosm study. Functional changes measured via potential nitrification and structural changes assessed via denaturating gradient gel electrophoresis (DGGE) at the DNA and RNA levels were contrasted with pesticide dissipation in the litter layer. The latter was inversely correlated with potential nitrification, which was temporarily inhibited at the initial sampling dates (0 to 21 days) when nearly 100 % of the applied pesticide amounts was still present in the litter. Fungicides induced changes in AOB and AOA communities with RNA-DGGE analysis showing a higher sensitivity. AOA were more responsive to pesticide application compared to AOB. Potential nitrification was less sensitive to the fungicides and was restored faster than structural changes, which persisted. These results support the theory of microbial redundancy for nitrification in a stressed litter environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  2. Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  3. Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs A, Kaiser K, Ludwig B, Rauber R, Joergensen RG (2011) Application of biochemical degradation indices to the microbial decomposition of maize leaves and wheat straw in soils under different tillage systems. Geoderma 162:207–214

    Article  CAS  Google Scholar 

  5. Danne A, Thomson L, Sharley D, Penfold CM, Hoffmann A (2010) Effects of native grass cover crops on beneficial and pest invertebrates in Australian vineyards. Environ Entomol 39:970–978

    Article  PubMed  CAS  Google Scholar 

  6. Hirschfelt DJ (1998) Soil fertility and vine nutrition. In: Ingels CA (ed) Cover cropping in vineyards: a grower's handbook, publication 3338. University of California, Division of Agriculture and Natural Resources, Oakland, pp 61–68

    Google Scholar 

  7. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Micro 6:245–252

    Article  CAS  Google Scholar 

  8. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  PubMed  CAS  Google Scholar 

  9. Kowalchuk GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    PubMed  CAS  Google Scholar 

  10. Zhang L-M, Offre PR, He J-Z, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci 107:17240–17245

    Article  PubMed  CAS  Google Scholar 

  11. Ruyters S, Mertens J, Springael D, Smolders E (2010) Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress. Soil Biol Biochem 42:766–772

    Article  CAS  Google Scholar 

  12. European Food Safety Agency (2008) Conclusion regarding the peer review of the pesticide risk assessment of the active substance penconazole. EFSA Sci Rep 175:1–104

    Google Scholar 

  13. European Food Safety Agency (2005) Conclusion regarding the peer review of the pesticide risk assessment of the active substance cyprodinil. EFSA Sci Rep 51:1–78

    Google Scholar 

  14. Wainwright M, Pugh G (1973) The effect of three fungicides on nitrification and ammonification in soil. Soil Biol Biochem 5:577–584

    Article  CAS  Google Scholar 

  15. Gaur AC, Misra KC (1977) Studies on the effects of herbicides on soil nitrification. Plant Soil 46:5–15

    Article  CAS  Google Scholar 

  16. Gopal M, Gupta A, Arunachalam V, Magu SP (2007) Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresour Technol 98:3154–3158

    Article  PubMed  CAS  Google Scholar 

  17. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Zhang H, Wu M, Su Z, Zhang C (2008) Impact of acetochlor on ammonia-oxidizing bacteria in microcosm soils. J Environ Sci 20:1126–1131

    Article  CAS  Google Scholar 

  19. Chang Y-J, Hussain AKMA, Stephen JR, Mullen MD, White DC, Peacock A (2001) Impact of herbicides on the abundance and structure of indigenous β-subgroup ammonia oxidizer communities in soil microcosm. Environ Toxicol Chem 20:2462–2468

    Article  PubMed  CAS  Google Scholar 

  20. Hernández M, Jia Z, Conrad R, Seeger M (2011) Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiol Ecol 78:511–519

    Article  PubMed  Google Scholar 

  21. Magri A, Haith DA (2009) Pesticide decay in turf: a review of processes and experimental data. J Environ Qual 38:4–12

    Article  PubMed  CAS  Google Scholar 

  22. Sicbaldi F, Sarra A, Copeta GL (1997) Diatomaceous earth-assisted extraction for the multiresidue determination of pesticides. J Chromatogr A 765:23–30

    Article  CAS  Google Scholar 

  23. Suciu NA, Capri E (2009) Adsorption of chlorpyrifos, penconazole and metalaxyl from aqueous solution by modified clays. J Environ Sci Health B 44:525–532

    Article  PubMed  CAS  Google Scholar 

  24. Kandeler E (1995) Potential nitrification. In: Schinner F, Ohlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Heidelberg, pp 146–149

    Google Scholar 

  25. Coppolecchia D, Puglisi E, Vasileiadis S, Suciu N, Hamon R, Maria Beone G, Trevisan M (2010) Relative sensitivity of different soil biological properties to zinc. Soil Biol Biochem 43:1798–1807

    Article  Google Scholar 

  26. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcription activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  PubMed  CAS  Google Scholar 

  27. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosm is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  PubMed  CAS  Google Scholar 

  28. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  29. Tourna M, Freitag TE, Prosser JI (2010) Stable isotope probing analysis of interactions between ammonia oxidizers. Appl Environ Microbiol 76:2468–2477

    Article  PubMed  CAS  Google Scholar 

  30. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal RNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  31. Buntjer JB (1999) Cross Checker Fingerprint analysis software v2.9. Wageningen University and Research Centre, Wageningen

    Google Scholar 

  32. Institute SAS (1995) SAS user’s guide: statistics. SAS Institute Inc, Cary

    Google Scholar 

  33. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  34. R Development Core Team (2009) R: a language and environment for statistical computing, reference index version 2.2.1. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  35. Singh N, Dureja P (2009) Effect of biocompost-amendment on degradation of triazoles fungicides in soil. Bull Environ Contam Toxicol 82:120–123

    Article  PubMed  CAS  Google Scholar 

  36. Dec J, Haider K, Rangaswamy V, Schäffer A, Fernandes E, Bollag JM (1997) Formation of soil-bound residues of cyprodinil and their plant uptake. J Agric Food Chem 45:514–520

    Article  CAS  Google Scholar 

  37. Fait G, Nicelli M, Fragoulis G, Trevisan M, Capri E (2007) Reduction of point contamination sources of pesticide from a vineyard farm. Environ Sci Technol 41:3302–3308

    Article  PubMed  CAS  Google Scholar 

  38. Coppola L, Comitini F, Casucci C, Milanovic V, Monaci E, Marinozzi M, Taccari M, Ciani M, Vischetti C (2011) Fungicides degradation in an organic biomixture: impact on microbial diversity. New Biotechnol 29:99–106

    Article  CAS  Google Scholar 

  39. Omirou M, Rousidou C, Bekris F, Papadopoulou KK, Menkissoglu-Spiroudi U, Ehaliotis C, Karpouzas DG (2010) The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community. Microb Ecol 61:201–213

    Article  PubMed  Google Scholar 

  40. Crouzet O, Besse-Hogan P, Batisson I, Bonnemoy F, Bohatier J, Mallet C (2009) Responses of soil microorganisms to the herbicide mesotrione in microcosm experiments: from whole microbial communities to functional groups. Proceedings of the Symposium in Pesticide behaviour in soils, water and air. York, UK, September 14-16, pp 12–13

  41. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071

    Article  PubMed  CAS  Google Scholar 

  42. Levičnik-Höfferle Š, Nicol GW, Ausec L, Mandić-Mulec I, Prosser JI (2011) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01275.x

  43. Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci 108:4170–4175

    Article  PubMed  CAS  Google Scholar 

  44. Spyrou IM, Karpouzas DG, Menkissoglu-Spiroudi U (2009) Do botanical pesticides alter the structure of the soil microbial community? Microb Ecol 58:715–727

    Article  PubMed  CAS  Google Scholar 

  45. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out within the SNAC project sponsored by Cariplo Foundation, Italy. All authors contributed equally to the paper. This study was also supported by the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy) and the Postgraduate Program “Biotechnology—Quality Assessment in Nutrition and the Environment”, Department of Biochemistry and Biotechnology, University of Thessaly (Konstantinos Demiris).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Trevisan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data 1

A schematic representation of the microcosms used is shown (DOC 26 kb) (DOC 26 kb)

Supplementary data 2

Redundancy analysis (RDA) of the DNA-based DGGE banding patterns for the communities of AOB (a, b) and AOA (c, d) according to pesticide (a, c) or the sampling time (b, d). Pesticides: penconazole (PEN), cyprodinil (CYP), untreated (CON). Sampling time: 0, 56 and 100 days. Ellipses indicate group-wise standard errors, while the probability values above each diagram refer to significance of group-wise (pesticide treatment or time main effects) differences according to the performed permutation test (DOC 221 kb) (DOC 221 kb)

Supplementary data 3

Redundancy analysis (RDA) of the RNA-based DGGE banding patterns for the communities of AOB (a, b) and AOA (c, d) according to pesticide (a, c) or the sampling time (b, d). Pesticides: penconazole (PEN), cyprodinil (CYP), untreated (CON). Sampling time: 0, 7, 21, 56 and 100 days. Ellipses indicate group-wise standard errors, while the probability values above each diagram refer to significance of group-wise (pesticide treatment or time main effects) differences according to the performed permutation test (DOC 235 kb) (DOC 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglisi, E., Vasileiadis, S., Demiris, K. et al. Impact of Fungicides on the Diversity and Function of Non-target Ammonia-Oxidizing Microorganisms Residing in a Litter Soil Cover. Microb Ecol 64, 692–701 (2012). https://doi.org/10.1007/s00248-012-0064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0064-4

Keywords

Navigation