Skip to main content

Advertisement

Log in

Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avrahami S, Conrad R (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69:6152–6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2011) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037

    Article  CAS  PubMed  Google Scholar 

  3. Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31

    Article  CAS  Google Scholar 

  4. Cao P, Zhang LM, Shen JP, Zheng YM, Di HJ, He JZ (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol. Ecol. 80:146–158

    Article  CAS  PubMed  Google Scholar 

  5. Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen B, Liu S, Ge J, Chu J (2010) Annual and seasonal variations of Q10 soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China. Soil Biol. Biochem. 42:1735–1742

    Article  CAS  Google Scholar 

  7. Chen H, Wu N, Wang Y, et al. (2013) Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: a three-year study. PLoS One 8:e53878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen H, Zhu Q, Peng C, et al. (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 19:2940–2955

    Article  PubMed  Google Scholar 

  9. Delgado-Baquerizo M, Maestre FT, Gallardo A, et al. (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    Article  CAS  PubMed  Google Scholar 

  10. Di H, Cameron K, Shen JP, Winefield C, O’callaghan M, Bowatte S, He J (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2:621–624

    Article  CAS  Google Scholar 

  11. Du Y, Cui Y, Xu X, Liang D, Long R, Cao G (2008) Nitrous oxide emissions from two alpine meadows in the Qinghai–Tibetan Plateau. Plant Soil 311:245–254

    Article  CAS  Google Scholar 

  12. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  13. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge,

    Book  Google Scholar 

  15. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ. Microbiol. 13:1642–1654

    Article  PubMed  Google Scholar 

  16. Gubry-Rangin C, Hai B, Quince C, et al. (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc. Natl. Acad. Sci. U. S. A. 108:21206–21211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9:2364–2374

    Article  CAS  PubMed  Google Scholar 

  18. Heisler JL, Weltzin JF (2006) Variability matters: towards a perspective on the influence of precipitation on terrestrial ecosystems. New Phytol. 172:189–192

    Article  PubMed  Google Scholar 

  19. Henry S, Bru D, Stres B, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72:5181–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu HW, Zhang LM, Yuan CL, Zheng Y, Wang JT, Chen D, He JZ (2015) The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front. Microbiol. 6:938

    PubMed  PubMed Central  Google Scholar 

  21. Hu HW, Macdonald CA, Trivedi P, Holmes B, Bodrossy L, He JZ, Singh BK (2015) Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ. Microbiol. 17:444–461

    Article  CAS  PubMed  Google Scholar 

  22. IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 81–82

    Google Scholar 

  23. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p. 1535

    Google Scholar 

  24. Jankju-Borzelabad M, Naseri K (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672

    Article  Google Scholar 

  25. Jiang C, Yu G, Fang H, Cao G, Li Y (2010) Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 44:2920–2926

    Article  CAS  Google Scholar 

  26. Jimenez MA, Jaksic FM, Armesto JJ, Gaxiola A, Meserve PL, Kelt DA, Gutierrez JR (2011) Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol. Lett. 14:1227–1235

    Article  PubMed  Google Scholar 

  27. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Yang S, Wang Z, Zhu X, Tang H (2010) Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 42:449–457

    Article  Google Scholar 

  30. Liang Y, Jiang Y, Wang F, et al. (2015) Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME J 9:2561–2572

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Cheng Z, Yan L, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 68:164–174

    Article  Google Scholar 

  32. Maestre FT, Delgado-Baquerizo M, Jeffries TC, et al. (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. U. S. A. 112:15684–15689

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938

    Article  PubMed  Google Scholar 

  34. Mikha MM, Rice CW, Milliken GA (2005) Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 37:339–347

    Article  CAS  Google Scholar 

  35. Melillo JM, Steudler P, Aber JD, et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  CAS  PubMed  Google Scholar 

  36. Michotey V, Méjean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd 1-denitrifying bacteria in environmental marine samples. Appl. Environ. Microbiol. 66:1564–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD (2013) Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16:234–241

    Article  PubMed  Google Scholar 

  38. Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20:523–531

    Article  CAS  PubMed  Google Scholar 

  39. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Suzuki MT, Taylor LT, Delong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 66:4605–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Rev Ecol Evol S 44:261–280

    Article  Google Scholar 

  42. Tang M, Li C, Zhang J (1986) The climate change of Qinghai-Xizang plateau and its neighborhood. Plateau Meteorol 1:39–49

    Google Scholar 

  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6. Mol. Biol. Evol. 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trabucco A, Zomer RJ (2009) Global Aridity Index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database CGIAR Consortium for Spatial Information. The CGIAR-CSI GeoPortal Available at www.cgiar-csi.org/data/globalaridity-and-pet-database

  45. Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49:401–417

    Article  PubMed  Google Scholar 

  46. Von-Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fert Soils 46:1–15

    Article  Google Scholar 

  47. Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35:L14702

    Article  Google Scholar 

  48. Wang C, Wang X, Liu D, et al. (2014) Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5:4799

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Van-Nostrand JD, Deng Y, Lü X, Wang C, Zhou J, Han X (2015) Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiol. Ecol. 91:fiv133

    Article  PubMed  Google Scholar 

  50. Wolkovich EM, Cook B, Allen JM, et al. (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    Article  CAS  PubMed  Google Scholar 

  51. Xiang SR, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem. 40:2281–2289

    Article  CAS  Google Scholar 

  52. Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Chang. Biol. 14:1592–1599

    Article  Google Scholar 

  53. Yang Y, Fang J, Fay PA, Bell JE, Ji C (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys. Res. Lett. 37:L15702

    Google Scholar 

  54. Yang Y, Fang J, Smith P, et al. (2009) Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob. Chang. Biol. 15:2723–2729

    Article  Google Scholar 

  55. Yang Y, Gao Y, Wang S, et al. (2014) The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J 8:430–440

    Article  CAS  PubMed  Google Scholar 

  56. Yao T, Liu X, Wang N, Shi Y (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chinese Sci Bull 45:1236–1243

    Article  Google Scholar 

  57. Yao T, Pu J, Lu A, Wang Y, Yu W (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res. 39:642–650

    Article  Google Scholar 

  58. Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plan 19:1467–1476

    Article  CAS  Google Scholar 

  59. Yue H, Wang M, Wang S, et al. (2015) The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME J 9:2012–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  PubMed  Google Scholar 

  61. Zhang S, Chen D, Sun D, Wang X, Smith JL, Du G (2012) Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biol Fert Soils 48:393–400

    Article  CAS  Google Scholar 

  62. Zhang W, Parker K, Luo Y, Wan S, Wallace L, Hu S (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob. Chang. Biol. 11:266–277

    Article  CAS  Google Scholar 

  63. Zhao M, Xue K, Wang F, et al. (2014) Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J 8:2045–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou J, Wu L, Deng Y, et al. (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5:1303–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zaady E, Groffman PM, Standing D, Shachak M (2013) High N2O emissions in dry ecosystems. Eur. J. Soil Biol. 59:1–7

    Article  CAS  Google Scholar 

  66. Zeng J, Lou K, Zhang CJ, et al. (2016) Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China. Front. Microbiol. 7:1353

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Science Foundation of China (41230857) and the Ministry of Science and Technology of China (2013CB956300). We are grateful to Professor Fan Liu from Huazhong Agricultural University for his assistance in soil sampling and Professor PM Chalk from The University of Melbourne for his valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju-Pei Shen or Ji-Zheng He.

Electronic supplementary material

ESM 1

(DOCX 1938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Shen, JP., Wang, JT. et al. Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau. Microb Ecol 75, 1009–1023 (2018). https://doi.org/10.1007/s00248-017-1098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1098-4

Keywords

Navigation