Skip to main content

Advertisement

Log in

Microbial Diversity of Hypersaline Sediments from Lake Lucero Playa in White Sands National Monument, New Mexico, USA

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Lake Lucero is a gypsum-rich, hypersaline, ephemeral playa located on the southern part of the Alkali Flat at the White Sands National Monument (WSNM), New Mexico, USA. This modern playa setting provides a dynamic extreme environment that changes from a freshwater lake to a hypersaline dry desert during the year. We investigated the microbial diversity (bacteria, archaea, and microbial eukaryotes) of the Lake Lucero sediments using 16S- and 18S-based amplicon sequencing approach and explored the diversity patterns in different geochemical microenvironments. Our results indicated that similar microbial communities, in particular bacterial communities colonized, were remarkably consistent across our depth profiles. Therefore, these communities show a first-order relevance on the environmental conditions (moisture content, oxygen content, and mineral composition). We found that Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Gemmatimonadetes were the major bacterial phyla, while Cyanobacteria were present in relatively low abundances and appeared only at the surface. Genus level assessment reflected that Truepera, Delftia, and Pseudomonas were the predominant bacterial genera across all samples. Euryarchaeota was the major archaeal phylum in all the samples, while Candidatus Halobonum and Candidatus Nitrososphaera were the main genera. Diatoms were the dominant eukaryotic group in surface samples and Fungi, Ciliophora, Metazoa, and Nematodes were the other major groups. As expected, metabolic inference indicated that aerobic microbial communities were near surface colonizers, with anaerobic communities dominating with increasing depth. We demonstrated that these microbial communities could be used to characterize unique geochemical microenvironments enabling us to extrapolate these results into other terrestrial and possibly extraterrestrial environments with comparable geochemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Langford RP (2003) The Holocene history of the White Sands dune field and influences on eolian deflation and playa lakes. Quat Int 104:31–39

    Article  Google Scholar 

  2. Szynkiewicz A, Ewing RC, Moore CH, Glamoclija M, Bustos D, Pratt LM (2010) Origin of terrestrial gypsum dunes—implications for Martian gypsum-rich dunes of Olympia Undae. Geomorphology 121:69–83

    Article  Google Scholar 

  3. Glamoclija M, Fogel ML, Steele A, Kish A (2012) Microbial nitrogen and sulfur cycles at the gypsum dunes of White Sands National Monument, New Mexico. Geomicrobiol J 29:733–751

    Article  CAS  Google Scholar 

  4. Glamoclija M, Steele A, Starke V, Zeidan M, Potochniak S, Sirisena K, Widanagamage IH (2016) Microbial signatures in sulfate-rich playas. Biosignature preservation and detection in mars analog environments (Vol. 1912). https://adsabs.harvard.edu/abs/2016LPICo1912.2051G

  5. Grotzinger JP, Arvidson R, Bell J, Calvin W, Clark B, Fike D, Golombek M, Greeley R, Haldemann A, Herkenhoff K (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:11–72

    Article  CAS  Google Scholar 

  6. Andrews‐Hanna JC, Zuber MT, Arvidson RE, Wiseman SM (2010) Early mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J Geophys Res Planets 115(E6). https://doi.org/10.1029/2009JE003485

  7. Malin MC, Edgett KS (2003) Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302:1931–1934

    Article  PubMed  CAS  Google Scholar 

  8. Squyres S, Grotzinger J, Arvidson R, Bell J, Calvin W, Christensen P, Clark B, Crisp J, Farrand W, Herkenhoff KE (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714

    Article  PubMed  CAS  Google Scholar 

  9. Shields LM, Mitchell C, Drouet F (1957) Alga-and lichen-stabilized surface crusts as soil nitrogen sources. Am J Bot:489–498

  10. Kocurek G, Carr M, Ewing R, Havholm KG, Nagar Y, Singhvi A (2007) White Sands Dune Field, New Mexico: age, dune dynamics and recent accumulations. Sediment Geol 197:313–331

    Article  Google Scholar 

  11. Lichvar R, Brostoff W, Sprecher S (2006) Surficial features associated with ponded water on playas of the arid southwestern United States: indicators for delineating regulated areas under the Clean Water Act. Wetlands 26:385–399

    Article  Google Scholar 

  12. Kidron GJ, Monger HC, Vonshak A, Conrod W (2012) Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 139:484–494

    Article  Google Scholar 

  13. Navarro JB, Moser DP, Flores A, Ross C, Rosen MR, Dong H, Zhang G, Hedlund BP (2009) Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake. Microb Ecol 57:307–320

    Article  PubMed  Google Scholar 

  14. Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME (2014) Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert. Microb Ecol 68:483–494

    Article  PubMed  CAS  Google Scholar 

  15. Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eigenbrode J, Benning LG, Maule J, Wainwright N, Steele A, Amundsen HE (2009) A field-based cleaning protocol for sampling devices used in life-detection studies. Astrobiology 9:455–465

    Article  PubMed  CAS  Google Scholar 

  17. Solorzano L (1969) Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr 14:799–801. https://doi.org/10.4319/lo.1969.14.5.0799

    Article  CAS  Google Scholar 

  18. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  19. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Teske A, Hinrichs K-U, Edgcomb V, de Vera GA, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. García-Maldonado JQ, Bebout BM, Everroad RC, López-Cortés A (2015) Evidence of novel phylogenetic lineages of methanogenic archaea from hypersaline microbial mats. Microb Ecol 69:106–117

    Article  PubMed  CAS  Google Scholar 

  23. Forget N, Murdock S, Juniper S (2010) Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Geobiology 8:417–432

    Article  PubMed  CAS  Google Scholar 

  24. Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci 91:1801–1804

    Article  PubMed  CAS  Google Scholar 

  25. Zhao B, Chen M, Sun Y, Yang J, Chen F (2011) Genetic diversity of picoeukaryotes in eight lakes differing in trophic status. Can J Microbiol 57:115–126

    Article  PubMed  CAS  Google Scholar 

  26. Maza-Márquez P, González-Martínez A, Martínez-Toledo M, Fenice M, Lasserrot A, González-López J (2017) Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor. Environ Sci Pollut Res 24:527–538

    Article  CAS  Google Scholar 

  27. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  28. Carnegie RB, Meyer GR, Blackbourn J, Cochennec-Laureau N, Berthe FC, Bower SM (2003) Molecular detection of the oyster parasite Mikrocytos mackini, and a preliminary phylogenetic analysis. Dis Aquat Org 54:219–227

    Article  PubMed  CAS  Google Scholar 

  29. Abbott CL, Gilmore SR, Lowe G, Meyer G, Bower S (2011) Sequence homogeneity of internal transcribed spacer rDNA in Mikrocytos mackini and detection of Mikrocytos sp. in a new location. Dis Aquat Org 93:243–250

    Article  PubMed  CAS  Google Scholar 

  30. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, Kikuchi Y (2014) Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol 5:457

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pylro VS, Roesch LFW, Morais DK, Clark IM, Hirsch PR, Tótola MR (2014) Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J Microbiol Methods 107:30–37

    Article  PubMed  CAS  Google Scholar 

  33. Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand JD, Yuan T, Yuan M, Deng Y, Zhou J (2015) Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol 15:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Auld RR, Mykytczuk NC, Leduc LG, Merritt TJ (2016) Seasonal variation in an acid mine drainage microbial community. Can J Microbiol 63:137–152. https://doi.org/10.1139/cjm-2016-0215

  35. Weekers P, Gast RJ, Fuerst PA, Byers TJ (1994) Sequence variations in small-subunit ribosomal RNAs of Hartmannella Vermiformis and their phylogenetic implications. Mol Biol Evol 11:684–690

    PubMed  CAS  Google Scholar 

  36. Garcia-Mazcorro JF, Mills D, Noratto G (2016) Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiol Ecol 92:fiw089

    Article  PubMed  CAS  Google Scholar 

  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  CAS  Google Scholar 

  39. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-Ε, Plymouth

    Google Scholar 

  41. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbø CL, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40:W88–W95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hollister EB, Engledow AS, Hammett AJM, Provin TL, Wilkinson HH, Gentry TJ (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838

    Article  PubMed  CAS  Google Scholar 

  43. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617

    Article  PubMed  CAS  Google Scholar 

  44. Farías M, Contreras M, Rasuk M, Kurth D, Flores M, Poire D, Novoa F, Visscher P (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329

    Article  PubMed  CAS  Google Scholar 

  45. Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS One 8:e66662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ochsenreiter T, Pfeifer F, Schleper C (2002) Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274

    Article  PubMed  CAS  Google Scholar 

  47. Ara I, Daram D, Baljinova T, Yamamura H, Hozzein W, Bakir M, Suto M (2013) Isolation, classification, phylogenetic analysis and scanning electron microscopy of halophilic, halotolerant and alkaliphilic actinomycetes isolated from hypersaline soil. Afr J Microbiol Res 7:298–308

    Article  CAS  Google Scholar 

  48. Stivaletta N, Barbieri R, Cevenini F, Lopez-Garcia P (2011) Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol J 28:83–95

    Article  CAS  Google Scholar 

  49. Sahl JW, Pace NR, Spear JR (2008) Comparative molecular analysis of endoevaporitic microbial communities. Appl Environ Microbiol 74:6444–6446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pikuta EV, Detkova EN, Bej AK, Marsic D, Hoover RB (2003) Anaerobic halo-alkaliphilic bacterial community of athalassic, hypersaline Mono Lake and Owens Lake in California. Astronomical Telescopes and Instrumentation. International Society for Optics and Photo-Dermatology, pp. 130–144

  51. Cockell C, Osinski G, Banerjee N, Howard K, Gilmour I, Watson J (2010) The microbe–mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8:293–308

    Article  PubMed  CAS  Google Scholar 

  52. Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76:757–768

    Article  PubMed  CAS  Google Scholar 

  53. Kim JS, Makama M, Petito J, Park NH, Cohan FM, Dungan RS (2012) Diversity of bacteria and archaea in hypersaline sediment from Death Valley National Park, California. Microbiol Open 1:135–148

    Article  CAS  Google Scholar 

  54. Spring S, Brinkmann N, Murrja M, Spröer C, Reitner J, Klenk H-P (2015) High diversity of culturable prokaryotes in a lithifying hypersaline microbial mat. Geomicrobiol J 32:332–346

    Article  CAS  Google Scholar 

  55. Sixt BS, Siegl A, Müller C, Watzka M, Wultsch A, Tziotis D, Montanaro J, Richter A, Schmitt-Kopplin P, Horn M (2013) Metabolic features of Protochlamydia amoebophila elementary bodies—a link between activity and infectivity in Chlamydiae. PLoS Pathog 9:e1003553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cho JC, Janssen PH, Costa KC, Hedlund BP (2011) Opitutae. Bergey's manual of systematics of archaea and bacteria.https://doi.org/10.1002/9781118960608.cbm00052

  57. Rasuk MC, Fernández AB, Kurth D, Contreras M, Novoa F, Poiré D, Farías ME (2016) Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb Ecol 71:44–56

    Article  PubMed  CAS  Google Scholar 

  58. Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8:e53497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Volkmann M, Gorbushina AA, Kedar L, Oren A (2006) Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258:50–54

    Article  PubMed  CAS  Google Scholar 

  60. Kedar L, Kashman Y, Oren A (2002) Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiol Lett 208:233–237

    Article  PubMed  CAS  Google Scholar 

  61. Samylina O, Gerasimenko L (2011) Fossilization of the cells of natronophilic endoevaporite cyanobacterium ‘Euhalothece natronophila’ in a modelling system. Microbiology 80:525–534

    Article  CAS  Google Scholar 

  62. Mikhodyuk O, Gerasimenko L, Akimov V, Ivanovsky R, Zavarzin G (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Microbiology 77:717–725

    Article  CAS  Google Scholar 

  63. Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5:127–140

    Article  PubMed  CAS  Google Scholar 

  64. Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chastain RA, Stewart JG (1985) Studies on Berkeleya hyalina (Round & Brooks) Cox, a marine tube-forming diatom. Phycologia 24:83–92

    Article  Google Scholar 

  66. Lobban CS (1985) Marine tube-dwelling diatoms of the Pacific coast of North America. I. Berkeleya, Haslea, Nitzschia, and Navicula sect. Microstigmaticae. Can J Bot 63:1779–1784

    Article  Google Scholar 

  67. Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci 105:2005–2010

    Article  PubMed  Google Scholar 

  68. Nübel U, Garcia-Pichel F, Muyzer G (2000) The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Int J Syst Evol Microbiol 50:1265–1277

    Article  PubMed  Google Scholar 

  69. Ferris F, Fratton C, Gerits J, Schultze-Lam S, Lollar BS (1995) Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol J 13:57–67

    Article  CAS  Google Scholar 

  70. Abdallah MB, Karray F, Mhiri N, Mei N, Quéméneur M, Cayol J-L, Erauso G, Tholozan J-L, Alazard D, Sayadi S (2016) Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid. Extremophiles 20:125–138

    Article  PubMed  CAS  Google Scholar 

  71. Bowman JP, McCammon SA, Rea SM, McMeekin TA (2000) The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183:81–88

    Article  PubMed  CAS  Google Scholar 

  72. Ugalde JA, Narasingarao P, Kuo S, Podell S, Allen EE (2013) Draft genome sequence of “Candidatus Halobonum tyrrellensis” strain G22, isolated from the hypersaline waters of Lake Tyrrell, Australia. Genome Announc 1:e01001–e01013

    Article  PubMed  PubMed Central  Google Scholar 

  73. Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T (2012) The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 14:3122–3145

    Article  PubMed  CAS  Google Scholar 

  74. Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W, Zhang C (2010) RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl Environ Microbiol 76:4538–4541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cui H-L, Li X-Y, Gao X, X-W X, Zhou Y-G, Liu H-C, Oren A, Zhou P-J (2010) Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093

    Article  PubMed  CAS  Google Scholar 

  76. Hezayen FF, Gutiérrez M, Steinbüchel A, Tindall BJ, Rehm BH (2010) Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 60:633–637

    Article  PubMed  CAS  Google Scholar 

  77. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012) Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 62:1331–1336

    Article  PubMed  CAS  Google Scholar 

  78. Roh SW, Nam Y-D, Nam S-H, Choi S-H, Park H-S, Bae J-W (2010) Complete genome sequence of Halalkalicoccus jeotgali B3T, an extremely halophilic archaeon. J Bacteriol 192:4528–4529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B Biol Sci 265:1461–1465

    Article  CAS  Google Scholar 

  80. Jones E, Sakayaroj J, Suetrong S, Somrithipol S, Pang K (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:187

    Google Scholar 

  81. Liu K, Ding X, Wang H-F, Zhang X, Hozzein WN, Wadaan MA, Lan A, Zhang B, Li W (2014) Eukaryotic microbial communities in hypersaline soils and sediments from the alkaline hypersaline Huama Lake as revealed by 454 pyrosequencing. Antonie Van Leeuwenhoek 105:871–880

    Article  PubMed  CAS  Google Scholar 

  82. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256

    Article  PubMed  CAS  Google Scholar 

  83. Takai K (2011) Limits of life and the biosphere: lessons from the detection of microorganisms in the deep sea and deep subsurface of the Earth. Origins and evolution of life: an astrobiological perspective, Cambridge Univeristy Press, Cambridge, pp 469–486

  84. Zhilina T, Zavarzina D, Kolganova T, Lysenko A, Tourova T (2009) Alkaliphilus peptidofermentans sp. nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe (III) reduction. Microbiology 78:445–454

    Article  CAS  Google Scholar 

  85. Moune S, Eatock C, Matheron R, Willison JC, Hirschler A, Herbert R, Caumette P (2000) Orenia salinaria sp. nov., a fermentative bacterium isolated from anaerobic sediments of Mediterranean salterns. Int J Syst Evol Microbiol 50:721–729

    Article  PubMed  CAS  Google Scholar 

  86. Vanparys B, Heylen K, Lebbe L, De Vos P (2005) Devosia limi sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1997–2000

    Article  PubMed  CAS  Google Scholar 

  87. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kimberly Wirtz and David Bustos (NPS White Sands) and Verena Starke (Geophysical Laboratory, Carnegie Institution of Washington) for their invaluable help during the field season.

Funding

This work was supported by NASA-ASTEP NNX14AT28G grant to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosala Ayantha Sirisena.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interests.

Electronic Supplementary Material

ESM 1

(DOCX 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirisena, K.A., Ramirez, S., Steele, A. et al. Microbial Diversity of Hypersaline Sediments from Lake Lucero Playa in White Sands National Monument, New Mexico, USA. Microb Ecol 76, 404–418 (2018). https://doi.org/10.1007/s00248-018-1142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1142-z

Keywords

Navigation