Skip to main content
Log in

Thermostable Keystone Bacteria Maintain the Functional Diversity of the Ixodes scapularis Microbiome Under Heat Stress

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Variations in the composition and diversity of tick microbiome due to high temperatures may influence the hierarchy of community members as a response to environmental change. Modifications in the community structure are hypothesized to drive alterations in the presence and/or abundance of functional pathways in the bacterial metagenome. In this study, this hypothesis was tested by using published 16S rRNA datasets of Ixodes scapularis males incubated at different temperatures (i.e., 4, 20, 30, and 37 °C) in a laboratory setting. Changes in community structure and functional profiles in response to temperature shifts were measured using co-occurrence networks and metagenome inference. Results from laboratory-reared ticks were then compared with those of field-collected ticks. The results from laboratory-reared ticks showed that high temperature altered the structure of the microbial community and decreased the number of keystone taxa. Notably, four taxa were identified as keystone in all the temperatures, and the functional diversity of the tick microbiome was contained in the four thermostable keystone their associated bacterial taxa. Three of the thermostable keystone taxa were also found in free-living ticks collected in Massachusetts. Moreover, the comparison of functional profiles of laboratory-reared and field-collected ticks revealed the existence of an important set of metabolic pathways that were common among the different datasets. Similar to the laboratory-reared ticks, the keystone taxa identified in field-collected ticks alongside their consortia (co-occurring taxa) were sufficient to retain the majority of the metabolic pathways in the functional profile. These results suggest that keystone taxa are essential in the stability and the functional resiliency of the tick microbiome under heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All material relevant to this publication are available in the manuscript.

Code Availability

Not applicable

References

  1. Agler, MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology 14(1). https://doi.org/10.1371/journal.pbio.1002352

  2. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  Google Scholar 

  3. Barreiro A, Lombao A, Martín A, Cancelo-González J, Carballas T, Díaz-Raviña M (2020) Soil heating at high temperatures and different water content: Effects on the soil microorganisms. Geosci (Switzerland) 10(9):1–17. https://doi.org/10.3390/geosciences10090355

    Article  Google Scholar 

  4. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In Third international AAAI conference on weblogs and social media

  5. Blondel V, Guillaume J, Lambiotte R, Mech E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008: P10008. http://findcommunities.googlepages.com

  6. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):1–17. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  7. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  Google Scholar 

  8. Burman E, Bengtsson-Palme J (2021) Microbial community interactions are sensitive to small changes in temperature. Front Microbiol 12:672910. https://doi.org/10.3389/fmicb.2021.672910

    Article  Google Scholar 

  9. Cagua EF, Wootton KL, Stouffer DB (2019) Keystoneness, centrality, and the structural controllability of ecological networks. J Ecol 107(4):1779–1790. https://doi.org/10.1111/1365-2745.13147

    Article  Google Scholar 

  10. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  Google Scholar 

  11. Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK, Paley S, Subhraveti P, Karp PD (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46(D1):D633–D639. https://doi.org/10.1093/nar/gkx935

    Article  CAS  Google Scholar 

  12. Chicana B, Couper LI, Kwan JY, Tahiraj E, Swei A (2019) Comparative microbiome profiles of sympatric tick species from the far-western United States. Insects 10(10):1–12. https://doi.org/10.3390/insects10100353

    Article  Google Scholar 

  13. Donhauser J, Niklaus PA, Rousk J, Larose C, Frey B (2020) Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biol Biochem 148:107873. https://doi.org/10.1016/j.soilbio.2020.107873

    Article  CAS  Google Scholar 

  14. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6). https://doi.org/10.1038/s41587-020-0548-6

  15. Estrada-Peña A, Cabezas-Cruz A, Obregón D (2020) Behind taxonomic variability: the functional redundancy in the tick microbiome. Microorganisms 8(11):1–16. https://doi.org/10.3390/microorganisms8111829

    Article  CAS  Google Scholar 

  16. Estrada-Peña A, Cabezas-Cruz A, Obregón D (2020) Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens 9(4):1–17. https://doi.org/10.3390/pathogens9040309

    Article  CAS  Google Scholar 

  17. Fernandes DA, Reid J, Macklaim MJ, McMurrough TA, Edgell DR, Gloor BG (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:15. https://doi.org/10.1186/2049-2618-2-15

    Article  Google Scholar 

  18. Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8(9). https://doi.org/10.1371/journal.pcbi.1002687

  19. Gall CA, Scoles GA, Magori K, Mason KL, Brayton KA (2017) Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks. Microbiome 5(1):133. https://doi.org/10.1186/s40168-017-0352-9

    Article  Google Scholar 

  20. García FC, Bestion E, Warfield R, Yvon-Durochera G (2018) Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci USA 115(43):10989–10994. https://doi.org/10.1073/pnas.1805518115

    Article  CAS  Google Scholar 

  21. Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ (2018) Recent insights into the tick microbiome gained through next-generation sequencing. Parasites and Vectors 11(1). https://doi.org/10.1186/s13071-017-2550-5

  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4(1): 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  23. Herren CM, McMahon KD (2018) Keystone taxa predict compositional change in microbial communities. Environ Microbiol 20(6):2207–2217. https://doi.org/10.1111/1462-2920.14257

    Article  Google Scholar 

  24. Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D (2019) Plant host-associated mechanisms for microbial selection. In Frontiers in Plant Science, 10, 862. Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.00862

  25. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. In Nucleic Acids Research, 28(1), pp. 27–30. Oxford University Press. https://doi.org/10.1093/nar/28.1.27

  26. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  Google Scholar 

  27. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285. https://doi.org/10.1038/nature02115

    Article  CAS  Google Scholar 

  28. Lalzar I, Harrus S, Mumcuoglu KY, Gottlieb Y (2012) Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities. Appl Environ Microbiol 78(12):4110–4116. https://doi.org/10.1128/AEM.00323-12

    Article  CAS  Google Scholar 

  29. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(SUPPL. 1). https://doi.org/10.1093/nar/gkq1019

  30. Liu Z, Wei H, Zhang J, Saleem M, He Y, Zhong J, Ma R (2021) Higher sensitivity of soil microbial network than community structure under acid rain. Microorganisms 9:118. https://doi.org/10.3390/microorganisms9010118

    Article  CAS  Google Scholar 

  31. Ma B, Wang Y, Ye S, Liu S, Stirling E, Gilbert JA, Faust K, Knight R, Jansson JK, Cardona C, Röttjers L, Xu J (2020) Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8:82. https://doi.org/10.1186/s40168-020-00857-2

    Article  CAS  Google Scholar 

  32. Mandakovic D, Rojas C, Maldonado J, Latorre M, Travisany D, Delage E, Bihouée A, Jean G, Díaz FP, Fernández-Gómez B, Cabrera P, Gaete A, Latorre C, Gutiérrez RA, Maass A, Cambiazo V, Navarrete SA, Eveillard D, González M (2018) Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-23931-0

    Article  CAS  Google Scholar 

  33. Mateos-Hernández L, Obreg D, Maye J, Borneres J, Versille N, de la Fuente JL, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A (2020) Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines 8(4):1–21. https://doi.org/10.3390/vaccines8040702

    Article  CAS  Google Scholar 

  34. Mateos-Hernández L, Obregon D, Wu-Chuang A, Bornères J, Versillé N, de la Fuente J, Diaz-Sanchez S, Bermúdez-Humarán LG, Torres-Maravilla E, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A (2021) Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front Immunol. https://doi.org/10.3389/fimmu.2021.704621

    Article  Google Scholar 

  35. Menchaca AC, Visi DK, Strey OF, Teel PD, Kalinowski K, Allen MS, Williamson PC (2013) Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 8(6):e67129. https://doi.org/10.1371/journal.pone.0067129

    Article  CAS  Google Scholar 

  36. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43(4):219–224. https://doi.org/10.2307/1312122

  37. Moore TC, Pulscher LA, Caddell L, von Fricken ME, Anderson BD, Gonchigoo B, Gray GC (2018) Evidence for transovarial transmission of tick-borne rickettsiae circulating in Northern Mongolia. PLoS Negl Trop Dis 12(8):e0006696. https://doi.org/10.1371/journal.pntd.0006696

    Article  Google Scholar 

  38. Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, Deponte K, Fish D, Fikrig E (2014) Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15(1):58–71. https://doi.org/10.1016/j.chom.2013.12.001

    Article  CAS  Google Scholar 

  39. Narasimhan S, Fikrig E (2015) Tick microbiome: the force within. Trends Parasitol 31(7):315–323. https://doi.org/10.1016/j.pt.2015.03.010

    Article  Google Scholar 

  40. Obregón D, Bard E, Abrial D, Estrada-Peña A, Cabezas-Cruz A (2019) Sex-Specific Linkages Between Taxonomic and Functional Profiles of Tick Gut Microbiomes. Front Cell Infect Microbiol 9(August):1–16. https://doi.org/10.3389/fcimb.2019.00298

    Article  CAS  Google Scholar 

  41. Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O’Callaghan CJ, Waltner-Toews D, Barker IK (2004) Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J Med Entomol 41(4):622–633. https://doi.org/10.1603/0022-2585-41.4.622

    Article  CAS  Google Scholar 

  42. Peavey CA, Lane RS (1996) Field and laboratory studies on the timing of oviposition and hatching of the western black-legged tick, Ixodes pacificus (Acari: Ixodidae). In Experimental & Applied Acarology 20:695–711

    Article  CAS  Google Scholar 

  43. RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

  44. Ruhnau B (2000) Eigenvector-centrality—a node-centrality? Soc Netw 22:357–365. https://doi.org/10.1016/S0378-8733(00)00031-9

    Article  Google Scholar 

  45. Swei A, Kwan JY (2017) Tick microbiome and pathogen acquisition altered by host blood meal. ISME J 11(3):813–816. https://doi.org/10.1038/ismej.2016.152

    Article  Google Scholar 

  46. Sun S, Jones RB, Fodor AA (2019) Inference based PICRUSt accuracy varies across sample types and functional categories. bioRxiv. https://doi.org/10.1101/655746

    Article  Google Scholar 

  47. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36. https://doi.org/10.1093/nar/28.1.33

    Article  CAS  Google Scholar 

  48. Thapa S, Zhang Y, Allen MS (2018) Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. MicrobiologyOpen 8(5). https://doi.org/10.1002/mbo3.719

  49. Thapa S, Zhang Y, Allen MS (2019) Bacterial microbiomes of Ixodes scapularis ticks collected from Massachusetts and Texas, USA. BMC Microbiol 19(1). https://doi.org/10.1186/s12866-019-1514-7

  50. Trout Fryxell RT, DeBruyn JM (2016) The microbiome of Ehrlichia-infected and uninfected lone star ticks (Amblyomma americanum). PLoS ONE 11(1):1–19. https://doi.org/10.1371/journal.pone.0146651

    Article  CAS  Google Scholar 

  51. van Treuren W, Ponnusamy L, Brinkerhoff RJ, Gonzalez A, Parobek CM, Juliano JJ, Andreadis TG, Falco RC, Ziegler LB, Hathaway N, Keeler C, Emch M, Bailey JA, Roe RM, Apperson CS, Knight R, Meshnick SR (2015) Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl Environ Microbiol 81(18):6200–6209. https://doi.org/10.1128/AEM.01562-15

    Article  CAS  Google Scholar 

  52. Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A (2021a) Current debates and advances in tick microbiome research. Curr Res Parasitol Vector-Borne Dis 100036. https://doi.org/10.1016/j.crpvbd.2021.100036

  53. Wu-Chuang A, Obregon D, Mateos-Hernández L, Cabezas-Cruz A (2021) Anti-tick microbiota vaccines: how can this actually work? Biologia. https://doi.org/10.1007/s11756-021-00818-6

    Article  Google Scholar 

  54. Xun W, Liu Y, Li W, Ren Y, Xiong W, Xu Z, Zhang N, Miao Y, Shen Q, Zhang R (2021) Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9(1):1–15. https://doi.org/10.1186/s40168-020-00985-9

    Article  CAS  Google Scholar 

  55. Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO (2016) Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol 25(19):4963–4977. https://doi.org/10.1111/mec.13832

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UMR BIPAR is supported by the French Government's Investissement d'Avenir program, Laboratoire d'Excellence “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID). Alejandra Wu-Chuang is supported by Programa Nacional de Becas de Postgrado en el Exterior “Don Carlos Antonio López” (grant no. 205/2018).

Funding

This research receive no specific funding.

Author information

Authors and Affiliations

Authors

Contributions

A.C.C. and D.O. conceived the study. A.W.C., D.O., and A.E.P. performed the analyses. A.W.C. prepared the figures and drafted the manuscript. All authors revised and accepted the last version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alejandro Cabezas-Cruz.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflicts of Interest

The authors declare that they have no conflicts of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Effects of different temperatures on microbial diversity. ASV richness of microbial communities of I. scapularis incubated at 4, 20, 30 and 37°C. Statistical comparisons were carried out with pairwise Kruskal-Wallis (* p < 0.05, ** p < 0.01, *** p < 0.001).

Supplementary Figure S2

Correlation between bacterial taxa abundance and changes in temperature. Heatmap representing the center log ratio (clr) values of bacteria genera that change significantly (Kruskal-Wallis, p < 0.05) among the four temperatures. Different days of incubation for each tick, in the different temperatures, are represented above the heatmap. Spearman correlation coefficient (ρ) calculated between each bacterial taxa and the temperature are represented as barplots at the right side of the heatmap. Statistical comparisons were carried out with Spearman rank correlation (* p < 0.05, ** p < 0.01, *** p < 0.001). The heatmap was constructed in R studio using heatmap.2 function. (PDF 563 KB)

Supplementary Figure S3

Functional contribution of thermostable keystone taxa and their positively associated neighbors. The number of metabolic pathways contributed by the subnetwork composed of the thermostable keystone taxa and their positively co-occurred bacterial neighbors compared to the total of hypothetical functions for the whole microbial community at different temperatures is displayed as a Venn diagram. (PDF 126 KB)

Supplementary Table 1

Type of connection between persistent neighbor and thermostable keystone taxa in the four temperatures (XLSX 11 KB)

Supplementary Table 2

Predicted pathways shared between the total community of bacteria and the subnetwork, composed of the keystone taxa and their direct neighbor, from ticks incubated at different temperatures. (XLSX 62 KB)

Supplementary Table 3

Predicted pathways shared between the total community of bacteria and the subnetwork, composed of the keystone taxa and their direct, positively associated neighbor, from ticks incubated at different temperatures. (XLSX 78 KB)

Supplementary Table 4

Predicted pathways shared between the total community of bacteria and the subnetwork, composed of the keystone taxa and their direct neighbor, from field-collected ticks. (XLSX 34 KB)

Supplementary Table 5

Predicted pathways shared between laboratory-reared and field collected ticks. (XLSX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu-Chuang, A., Obregon, D., Estrada-Peña, A. et al. Thermostable Keystone Bacteria Maintain the Functional Diversity of the Ixodes scapularis Microbiome Under Heat Stress. Microb Ecol 84, 1224–1235 (2022). https://doi.org/10.1007/s00248-021-01929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01929-y

Keywords

Navigation