Skip to main content
Log in

Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant–microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant–microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Peñuelas J, Terradas J (2014) The foliar microbiome. Trends Plant Sci 19:278–280. https://doi.org/10.1016/J.TPLANTS.2013.12.007

    Article  PubMed  Google Scholar 

  2. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:1–10. https://doi.org/10.1186/GB-2013-14-6-209

    Article  Google Scholar 

  3. Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A (2020) Plant microbiome–an account of the factors that shape community composition and diversity. Curr Plant Biol 23:100161. https://doi.org/10.1016/J.CPB.2020.100161

    Article  Google Scholar 

  4. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. https://doi.org/10.1111/NPH.13312

    Article  PubMed  Google Scholar 

  5. Harman G, Khadka R, Doni F, Uphoff N (2021) Benefits to plant health and productivity from enhancing plant microbial symbionts. Front Plant Sci 11:2001. https://doi.org/10.3389/FPLS.2020.610065

    Article  Google Scholar 

  6. Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 47:1652–1704. https://doi.org/10.1039/C7CS00343A

    Article  CAS  PubMed  Google Scholar 

  7. Rizaludin MS, Stopnisek N, Raaijmakers JM, Garbeva P (2021) The chemistry of stress: understanding the ‘cry for help’ of plant roots. Metabolites 11:357. https://doi.org/10.3390/metabo11060357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taulé C, Vaz-Jauri P, Battistoni F (2021) Insights into the early stages of plant-endophytic bacteria interaction. World J Microbiol Biotechnol 37:13. https://doi.org/10.1007/S11274-020-02966-4

    Article  PubMed  Google Scholar 

  9. Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T, Yazaki K, Sugiyama A (2021) Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. Plant Physiol 186:270. https://doi.org/10.1093/PLPHYS/KIAB069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, Yazaki K, Sugiyama A (2020) Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ 43:1036–1046. https://doi.org/10.1111/PCE.13708

    Article  CAS  PubMed  Google Scholar 

  11. Rolfe SA, Griffiths J, Ton J (2019) Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 49:73–82. https://doi.org/10.1016/J.MIB.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  12. Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807. https://doi.org/10.1111/TPJ.13543

    Article  CAS  PubMed  Google Scholar 

  13. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334. https://doi.org/10.1007/S10529-015-1814-4

    Article  PubMed  Google Scholar 

  14. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/J.1574-6968.2007.00918.X

    Article  CAS  PubMed  Google Scholar 

  15. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343. https://doi.org/10.1146/annurev.ecolsys.29.1.319

    Article  Google Scholar 

  16. Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3:137–151. https://doi.org/10.3390/MICROORGANISMS3020137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behie SW, Moreira CC, Sementchoukova I, Barelli L, Zelisko PM, Bidochka MJ (2017) Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun 8:14245. https://doi.org/10.1038/NCOMMS14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoysted GA, Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ (2021) Carbon for nutrient exchange between Lycopodiella inundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO2. Mycorrhiza 31:431–440. https://doi.org/10.1007/S00572-021-01033-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/J.COPBIO.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Negreiros L, de Carvalho P, de Oliveira SE, Aparecida Chagas-Paula D, Honorata Hortolan Luiz J, Ikegaki M (2016) Importance and implications of the production of phenolic secondary metabolites by endophytic fungi: a mini-review. Mini-Reviews Med Chem 16:259–271. https://doi.org/10.2174/1389557515666151016123923

    Article  CAS  Google Scholar 

  21. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/FMICB.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 541(54):1–10. https://doi.org/10.1007/S13225-012-0158-9

    Article  Google Scholar 

  23. Zhang Y, Yu X, Zhang W, Lang D, Zhang X, Cui G, Zhang X (2019) Interactions between endophytes and plants: beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. J Plant Biol 621(62):1–13. https://doi.org/10.1007/S12374-018-0274-5

    Article  Google Scholar 

  24. Mello IS, Pietro-Souza W, Barros BM, da Silva GF, Campos ML, Soares MA (2019) Endophytic bacteria mitigate mercury toxicity to host plants. Symbiosis 79:251–262. https://doi.org/10.1007/S13199-019-00644-0

    Article  CAS  Google Scholar 

  25. Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, Kim SH (2018) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb Ecol 75:407–418. https://doi.org/10.1007/S00248-017-1054-3

    Article  PubMed  Google Scholar 

  26. Martin BC, Alarcon MS, Gleeson D, Middleton JA, Fraser MW, Ryan MH, Holmer M, Kendrick GA, Kilminster K (2020) Root microbiomes as indicators of seagrass health. FEMS Microbiol Ecol 96:fiz201. https://doi.org/10.1093/femsec/fiz201

  27. Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595. https://doi.org/10.1016/J.TPLANTS.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  28. Sharma G, Malthankar PA, Mathur V (2021) Insect–plant interactions: a multilayered relationship. Ann Entomol Soc Am 114:1–16. https://doi.org/10.1093/AESA/SAAA032

    Article  CAS  Google Scholar 

  29. Nadarajah K, Abdul Rahman NSN (2021) Plant–microbe interaction: aboveground to belowground, from the good to the bad. Int J Mol Sci 22:10388. https://doi.org/10.3390/IJMS221910388

  30. Albornoz FE, Prober SM, Ryan MH, Standish RJ (2022) Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function. Plant Soil 2022:1–13. https://doi.org/10.1007/S11104-022-05479-1

    Article  Google Scholar 

  31. Batool F, Rehman Y, Hasnain S (2016) Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Front Life Sci 9:313–322. https://doi.org/10.1080/21553769.2016.1256842

    Article  CAS  Google Scholar 

  32. Blakeman JP (1985) Ecological succession of leaf surface microorganisms in relation to biological control. In: Windels, C.E.Lindow SE, (ed) Biological Control on the Phylloplane. American Phytopathological Society, St. Paul, USA, pp 6–30

    Google Scholar 

  33. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654. https://doi.org/10.1073/PNAS.2533483100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398. https://doi.org/10.1080/15572536.2004.11833083

    Article  PubMed  Google Scholar 

  35. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/J.SOILBIO.2009.11.024

    Article  CAS  Google Scholar 

  36. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/J.TIM.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  37. Sapp M, Ploch S, Fiore-Donno AM, Bonkowski M, Rose LE (2018) Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol 20:30–43. https://doi.org/10.1111/1462-2920.13941

    Article  CAS  PubMed  Google Scholar 

  38. Balogh B, Nga NTT, Jones JB (2018) Relative level of bacteriophage multiplication in vitroor in phyllosphere may not predict in planta efficacy for controlling bacterial leaf spot on tomato caused by Xanthomonas perforans. Front Microbiol 9:2176. https://doi.org/10.3389/FMICB.2018.02176

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gundel PE, Helander M, Garibaldi LA, Vázquez-de-Aldana BR, Zabalgogeazcoa I, Saikkonen K (2016) Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecol 21:50–56. https://doi.org/10.1016/J.FUNECO.2016.03.001

    Article  Google Scholar 

  40. Lau MK, Arnold AE, Johnson NC (2013) Factors influencing communities of foliar fungal endophytes in riparian woody plants. Fungal Ecol 6:365–378. https://doi.org/10.1016/J.FUNECO.2013.06.003

    Article  Google Scholar 

  41. Sanchez-Azofeifa A, Oki Y, Fernandes GW, Ball RA, Gamon J (2012) Relationships between endophyte diversity and leaf optical properties. Trees 26:291–299. https://doi.org/10.1007/S00468-011-0591-5

    Article  Google Scholar 

  42. Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021) Shaping the leaf microbiota: plant–microbe–microbe interactions. J Exp Bot 72:36–56. https://doi.org/10.1093/JXB/ERAA417

    Article  CAS  PubMed  Google Scholar 

  43. Saunders M, Glenn AE, Kohn LM (2010) Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes. Evol Appl 3:525–537. https://doi.org/10.1111/J.1752-4571.2010.00141.X

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shoji J, Hinoo H, Kato T, Hattori T, Hirooka K, Tawara K, Shiratori O, Terui Y (1990) Isolation of cepafungins I, II and III from Pseudomonas species. J Antibiot (Tokyo) 43:783–787. https://doi.org/10.7164/ANTIBIOTICS.43.783

    Article  CAS  PubMed  Google Scholar 

  45. Sandani HBP, Ranathunge NP, Lakshman PLN, Weerakoon WMW (2019) Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Sci Technol 29:727–745. https://doi.org/10.1080/09583157.2019.1597331

    Article  Google Scholar 

  46. Haruna E, Zin NM, Kerfahi D, Adams JM (2018) Extensive overlap of tropical rainforest bacterial endophytes between soil, plant parts, and plant species. Microb Ecol 75:88–103. https://doi.org/10.1007/s00248-017-1002-2

    Article  CAS  PubMed  Google Scholar 

  47. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/mmbr.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  48. Griffin EA, Carson WP (2018) Tree endophytes: cryptic drivers of tropical forest diversity. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences. Springer, Cham, pp 63–103

  49. Dinesh R, Srinivasan V, Sheeja TE, Anandaraj M, Srambikkal H (2017) Endophytic actinobacteria: diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol 43:546–566. https://doi.org/10.1080/1040841X.2016.1270895

    Article  CAS  PubMed  Google Scholar 

  50. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26. https://doi.org/10.1038/ja.2005.1

    Article  PubMed  Google Scholar 

  51. Waksman SA, Schatz A, Reynolds DM (2010) Production of antibiotic substances by actinomycetes. Ann N Y Acad Sci 1213:112–124. https://doi.org/10.1111/J.1749-6632.2010.05861.X

    Article  PubMed  Google Scholar 

  52. Bernardi DI, das Chagas FO, Monteiro AF, Dos Santos GF, de Souza Berlinck RG (2019) Secondary metabolites of endophytic actinomycetes: isolation, synthesis, biosynthesis, and biological activities. Prog Chem Org Nat Prod 108:207–296. https://doi.org/10.1007/978-3-030-01099-7_3

    Article  CAS  PubMed  Google Scholar 

  53. Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111:13715–13720. https://doi.org/10.1073/PNAS.1216057111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gurney KA, Mantle PG (1993) Biosynthesis of 1-n-methylalbonoursin by an endophytic streptomyces sp isolated from perennial ryegrass. J Nat Prod 56:1194–1198. https://doi.org/10.1021/np50097a031

    Article  CAS  Google Scholar 

  55. Lugo MA, Ferrero M, Menoyo E, Estévez MC, Siñeriz F, Anton A (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb Ecol 55:705–713. https://doi.org/10.1007/S00248-007-9313-3

    Article  CAS  PubMed  Google Scholar 

  56. Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM, Pelletier E, Hirsch PR, Meyer F, Gilbert JA, Le Paslier D, Simonet P, Vogel TM (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 69(6):1677–1687. https://doi.org/10.1038/ismej.2011.197

    Article  CAS  Google Scholar 

  57. Behie SW, Bonet B, Zacharia VM, McClung DJ, Traxler MF (2017) Molecules to ecosystems: Actinomycete natural products in situ. Front Microbiol 7:2149. https://doi.org/10.3389/FMICB.2016.02149

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liang D, Guo J, Hou F, Bowatte S (2021) High level of conservation and diversity among the endophytic seed bacteriome in eight alpine grassland species growing at the Qinghai Tibetan Plateau. FEMS Microbiol Ecol 97:fiab060. https://doi.org/10.1093/femsec/fiab060

  59. Martinez-Rodriguez A, Macedo-Raygoza G, Huerta-Robles AX, Reyes-Sepulveda I, Lozano-Lopez J, García-Ochoa EY, Fierro-Kong L, Medeiros MHG, Di Mascio P, White JF, Beltran-Garcia MJ (2019) Agave seed endophytes: ecology and impacts on root architecture, nutrient acquisition, and cold stress tolerance. In: Verma S, White JJ (eds) Seed Endophytes: Biology and Biotechnology. Springer, Cham, pp 139–170

    Chapter  Google Scholar 

  60. Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420. https://doi.org/10.1007/S10725-012-9730-2

    Article  CAS  Google Scholar 

  61. Nafis A, Raklami A, Bechtaoui N, El Khalloufi F, El Alaoui A, Glick BR, Hafidi M, Kouisni L, Ouhdouch Y, Hassani L (2019) Actinobacteria from extreme niches in Morocco and their plant growth-promoting potentials. Diversity 11:139. https://doi.org/10.3390/d11080139

    Article  CAS  Google Scholar 

  62. Ayswaria R, Vasu V, Krishna R (2020) Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol 46:750–758. https://doi.org/10.1080/1040841X.2020.1828816

    Article  CAS  PubMed  Google Scholar 

  63. Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sharma RK, Saikia R, Donovan AO, Singh BP (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Reports 71(7):1–17. https://doi.org/10.1038/s41598-017-12235-4

    Article  CAS  Google Scholar 

  64. Bibi F, Strobel GA, Naseer MI, Yasir M, Khalaf Al-Ghamdi AA, Azhar EI (2018) Halophytes-associated endophytic and rhizospheric bacteria: diversity, antagonism and metabolite production. Biocontrol Sci Technol 28:192–213. https://doi.org/10.1080/09583157.2018.1434868

    Article  Google Scholar 

  65. Selim MSM, Abdelhamid SA, Mohamed SS (2021) Secondary metabolites and biodiversity of actinomycetes. J Genet Eng Biotechnol 19:72. https://doi.org/10.1186/s43141-021-00156-9

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic Gram-positive bacteria. Front Microbiol 10:463. https://doi.org/10.3389/FMICB.2019.00463

    Article  PubMed  PubMed Central  Google Scholar 

  67. Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, Ghosh P, Wattam AR, Azevedo V (2018) Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Sci Reports 81(8):1–15. https://doi.org/10.1038/s41598-018-29521-4

    Article  CAS  Google Scholar 

  68. Zhu Y, She X (2018) Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium. Can J Microbiol 64:253–264. https://doi.org/10.1139/CJM-2017-0529

    Article  CAS  PubMed  Google Scholar 

  69. Hussain A, Hasnain S (2011) Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J Microbiol Biotechnol 27:2645–2654. https://doi.org/10.1007/s11274-011-0738-y

    Article  CAS  Google Scholar 

  70. Flores-Núñez VM, Fonseca-García C, Desgarennes D, Eloe-Fadrosh E, Woyke T, Partida-Martínez LP (2020) Functional signatures of the epiphytic prokaryotic microbiome of agaves and cacti. Front Microbiol 10:3044. https://doi.org/10.3389/FMICB.2019.03044

    Article  PubMed  PubMed Central  Google Scholar 

  71. Eida AA, Ziegler M, Lafi FF, Michell CT, Voolstra CR, Hirt H, Saad MM (2018) Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE 13:e0208223. https://doi.org/10.1371/JOURNAL.PONE.0208223

    Article  PubMed  PubMed Central  Google Scholar 

  72. Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 48(4):989–1001. https://doi.org/10.1038/ismej.2010.35

    Article  Google Scholar 

  73. Teixeira LCRS, Yeargeau E, Balieiro FC, Piccolo MC, Peixoto RS, Greer CW, Rosado AS (2013) Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, maritime Antarctica. PLoS ONE 8:e66109. https://doi.org/10.1371/JOURNAL.PONE.0066109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Putrie RFW, Aryantha INP, Iriawati, Antonius S (2020) Diversity of endophytic and rhizosphere bacteria from pineapple (Ananas comosus) plant in semi-arid ecosystem. Biodiversitas J Biol Divers 21:3084–3093. https://doi.org/10.13057/BIODIV/D210728

    Article  Google Scholar 

  75. Taghinasab M, Jabaji S (2020) Cannabis microbiome and the role of endophytes in modulating the production of secondary metabolites: an overview. Microorganisms 8:355. https://doi.org/10.3390/MICROORGANISMS8030355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429. https://doi.org/10.3389/fgene.2014.00429

  77. Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Research 5:1007. https://doi.org/10.12688/f1000research.8221.1

  78. Kang SM, Khan AL, Hussain J, Ali L, Kamran M, Waqas M, Lee IJ (2012) Rhizonin A from Burkholderia sp. KCTC11096 and its growth promoting role in lettuce seed germination. Molecules 17:7980–7988. https://doi.org/10.3390/MOLECULES17077980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lotfy MM, Hassan HM, Hetta MH, El-Gendy AO, Mohammed R (2018) Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni-Suef Univ J Basic Appl Sci 7:263–269. https://doi.org/10.1016/J.BJBAS.2018.02.002

    Article  Google Scholar 

  80. Schwarz M, Köpcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245. https://doi.org/10.1016/J.PHYTOCHEM.2004.06.035

    Article  CAS  PubMed  Google Scholar 

  81. De Azevedo Silva F, Liotti RG, Ana Paula deAraújo B, De Melo Reis É, Passos MBS, Dos Santos EL, Sampaio OM, Januário AH, Branco CLB, Da Silva GF, De Mendonça EAF, Soares MA (2018) Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS One 13:e0195874. https://doi.org/10.1371/JOURNAL.PONE.0195874

  82. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species — opportunistic, avirulent plant symbionts. Nat Rev Microbiol 21(2):43–56. https://doi.org/10.1038/nrmicro797

    Article  Google Scholar 

  83. Ding G, Chen AJ, Lan J, Zhang H, Chen X, Liu X, Zou Z (2012) Sesquiterpenes and cyclopeptides from the endophytic fungus Trichoderma asperellum Samuels. Lieckf & Nirenberg Chem Biodivers 9:1205–1212. https://doi.org/10.1002/CBDV.201100185

    Article  CAS  PubMed  Google Scholar 

  84. Rosmana A, Samuels GJ, Ismaiel A, Ibrahim ES, Chaverri P, Herawati Y, Asman A (2015) Trichoderma asperellum: a dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Trop Plant Pathol 40:19–25. https://doi.org/10.1007/S40858-015-0004-1

    Article  Google Scholar 

  85. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950. https://doi.org/10.1099/00221287-147-11-2943

    Article  CAS  PubMed  Google Scholar 

  86. Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741. https://doi.org/10.1099/00221287-148-11-3737

    Article  CAS  PubMed  Google Scholar 

  87. Barelmanna I, Taraza K, Budzikiewicza H, Meyer JM (1996) Cepaciachelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia. Zeitschrift für Naturforsch C 51:627–630. https://doi.org/10.1515/ZNC-1996-9-1004

    Article  Google Scholar 

  88. Meyer JM, Van Van T, Stintzi A, Berge O, Winkelmann G (1995) Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). Biometals 8:309–317. https://doi.org/10.1007/BF00141604

    Article  CAS  PubMed  Google Scholar 

  89. Kandel SL, Joubert PM, Doty SL (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5:77. https://doi.org/10.3390/MICROORGANISMS5040077

    Article  PubMed  PubMed Central  Google Scholar 

  90. Meyers E, Bisacchi GS, Dean L, Liu WC, Minassian B, Slusarchyk DS, Tanaka SK, Trejo W, Sykes RB (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J Antibiot (Tokyo) 40:1515–1519. https://doi.org/10.7164/ANTIBIOTICS.40.1515

    Article  CAS  PubMed  Google Scholar 

  91. Schellenberg B, Bigler L, Dudler R (2007) Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ Microbiol 9:1640–1650. https://doi.org/10.1111/J.1462-2920.2007.01278.X

    Article  CAS  PubMed  Google Scholar 

  92. Lu SE, Novak J, Austin FW, Gu G, Ellis D, Kirk M, Wilson-Stanford S, Tonelli M, Smith L (2009) Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. Biochemistry 48:8312–8321. https://doi.org/10.1021/BI900814C

    Article  CAS  PubMed  Google Scholar 

  93. Kirinuki T, Ichiba T, Katayama K (1984) General survey of action site of altericidins on metabolism of Alternaria kikuchiana and Ustilago maydis. J Pestic Sci 9:601–610. https://doi.org/10.1584/jpestics.9.601

    Article  CAS  Google Scholar 

  94. Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, Sykes RB (1984) Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J Antibiot (Tokyo) 37:431–440. https://doi.org/10.7164/ANTIBIOTICS.37.431

    Article  CAS  PubMed  Google Scholar 

  95. Mullins AJ, Murray JAH, Bull MJ, Jenner M, Jones C, Webster G, Green AE, Neill DR, Connor TR, Parkhill J, Challis GL, Mahenthiralingam E (2019) Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nat Microbiol 4:996–1005. https://doi.org/10.1038/s41564-019-0383-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiao Y, Yoshihara T, Ishikuri S, Uchino H, Ichihara A (1996) Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett 37:1039–1042. https://doi.org/10.1016/0040-4039(95)02342-9

    Article  CAS  Google Scholar 

  97. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445. https://doi.org/10.1146/ANNUREV.PHYTO.44.013106.145710

    Article  CAS  PubMed  Google Scholar 

  98. Bach E, Passaglia LMP, Jiao J, Gross H (2021) Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 48(2):121–160. https://doi.org/10.1080/1040841X.2021.1946009

  99. de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34. https://doi.org/10.1111/J.1574-6941.2003.TB01042.X

    Article  PubMed  Google Scholar 

  100. El-Banna N, Winkelmann G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78. https://doi.org/10.1046/J.1365-2672.1998.00473.X

    Article  CAS  PubMed  Google Scholar 

  101. Murata K, Suenaga M, Kai K (2021) Genome Mining discovery of protegenins a-D, bacterial polyynes involved in the antioomycete and biocontrol activities of Pseudomonas protegens. ACS Chem Biol. https://doi.org/10.1021/acschembio.1c00276

    Article  PubMed  Google Scholar 

  102. Yang X, Peng T, Yang Y, Li W, Xiong J, Zhao L, Ding Z (2015) Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Nat Prod Res 29:331–335. https://doi.org/10.1080/14786419.2014.945174

    Article  CAS  PubMed  Google Scholar 

  103. Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res 28:265–267. https://doi.org/10.1080/14786419.2013.830219

    Article  CAS  PubMed  Google Scholar 

  104. Potter DA, Tyler Stokes J, Redmond CT, Schardl CL, Panaccione DG (2008) Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol Exp Appl 126:138–147. https://doi.org/10.1111/J.1570-7458.2007.00650.X

    Article  Google Scholar 

  105. Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587. https://doi.org/10.1021/JF060626U

    Article  CAS  PubMed  Google Scholar 

  106. Florea S, Panaccione DG, Schardl CL (2017) Ergot alkaloids of the family Clavicipitaceae. Phytopathology 107:504–518. https://doi.org/10.1094/PHYTO-12-16-0435-RVW

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996. https://doi.org/10.1016/J.PHYTOCHEM.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  108. Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331–344. https://doi.org/10.1016/J.FUNECO.2011.04.005

    Article  Google Scholar 

  109. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050. https://doi.org/10.1111/J.1365-2958.2005.04747.X

    Article  CAS  PubMed  Google Scholar 

  110. Purev E, Kondo T, Takemoto D, Niones JT, Ojika M (2020) Identification of ε-poly-L-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules 25:1032. https://doi.org/10.3390/MOLECULES25051032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guerre P (2015) Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins (Basel) 7:773–790. https://doi.org/10.3390/TOXINS7030773

    Article  CAS  PubMed  Google Scholar 

  112. Schardl CL, Panaccione DG, Tudzynski P (2006) Chapter 2 Ergot - alkaloids biology and molecular biology. Alkaloids Chem Biol 63:45–86. https://doi.org/10.1016/S1099-4831(06)63002-2

    Article  CAS  PubMed  Google Scholar 

  113. Jakubczyk D, Dussart F (2020) Selected fungal natural products with antimicrobial properties. Molecules 25:911. https://doi.org/10.3390/MOLECULES25040911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meira M, da Silva EP, David JM, David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Rev Bras Farmacogn 22:682–713. https://doi.org/10.1590/S0102-695X2012005000025

    Article  CAS  Google Scholar 

  115. Yadav RN, Mahtab Rashid M, Zaidi NW, Kumar R, Singh HB (2019) Secondary metabolites of Metarhizium spp. and Verticillium spp. and their agricultural applications. In: Singh H, Keswani C, Reddy M, Sansinenea EG-EC (ed) Secondary metabolites of plant growth promoting rhizomicroorganisms: discovery and applications. Springer, Singapore, pp 27–58

  116. Roberts DW, St. Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70. https://doi.org/10.1016/S0065-2164(04)54001-7

    Article  CAS  PubMed  Google Scholar 

  117. Jegorov A, Sedmera P, Maťha V (1993) Biosynthesis of destruxins. Phytochemistry 33:1403–1405. https://doi.org/10.1016/0031-9422(93)85099-D

    Article  CAS  PubMed  Google Scholar 

  118. Pedras MSC, Irina Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596. https://doi.org/10.1016/S0031-9422(02)00016-X

    Article  CAS  PubMed  Google Scholar 

  119. Kato Y, Koshino H, Uzawa J, Anzai K (1996) Fungerin, a New antifungal alkaloid from Fusarium sp. Biosci Biotechnol Biochem 60:2081–2083. https://doi.org/10.1271/BBB.60.2081

    Article  CAS  Google Scholar 

  120. Strasser H, Vey A, Butt TM (2000) Are There any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735. https://doi.org/10.1080/09583150020011690

    Article  Google Scholar 

  121. McKinnon AC, Saari S, Moran-Diez ME, Meyling NV, Raad M, Glare TR (2017) Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. Biocontrol 62:1–17. https://doi.org/10.1007/S10526-016-9769-5

    Article  CAS  Google Scholar 

  122. Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 109:46–54

    Google Scholar 

  123. Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452. https://doi.org/10.1017/S0953756204009724

    Article  CAS  PubMed  Google Scholar 

  124. McInnes AG, Smith DG, Wat CK, Vining LC, Wright JLC (1974) Tenellin and bassianin, metabolites of Beauveria species. Structure elucidation with 15N- and doubly 13C-enriched compounds using 13C nuclear magnetic resonance spectroscopy. J Chem Soc Chem Commun 281–282. https://doi.org/10.1039/C39740000281

  125. Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377. https://doi.org/10.3390/MOLECULES17032367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci 95:8916–8921. https://doi.org/10.1073/PNAS.95.15.8916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R, Wrobel K, Barona-Gómez F, Flores-Cotera LB (2017) Phylogenomics of 2,4-diacetylphloroglucinol-producing Pseudomonas and novel antiglycation endophytes from Piper auritum. J Nat Prod 80:1955–1963. https://doi.org/10.1021/ACS.JNATPROD.6B00823

    Article  PubMed  Google Scholar 

  128. Reshma P, MkSr NN, Chennappa G, Ss S, Rz S (2018) Induced systemic resistance by 2,4-diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian J Exp Biol 56:207–212

    CAS  Google Scholar 

  129. Andreolli M, Zapparoli G, Angelini E, Lucchetta G, Lampis S, Vallini G (2019) Pseudomonas protegens MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol Res 219:123–131. https://doi.org/10.1016/J.MICRES.2018.11.003

    Article  PubMed  Google Scholar 

  130. Jia J, Ford E, Hobbs SM, Baird SM, Lu S (2022) Occidiofungin is the key metabolite for antifungal activity of the endophytic bacterium Burkholderia sp. MS455 against Aspergillus flavus. Phytopathology 112:481–491. https://doi.org/10.1094/phyto-06-21-0225-r

    Article  CAS  PubMed  Google Scholar 

  131. Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:337. https://doi.org/10.3389/fcimb.2017.00337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Singh VK, Mishra A, Jha B (2019) 3-benzyl-hexahydro-pyrrolo[1,2-a]pyrazine-1,4-dione extracted from Exiguobacterium indicum showed anti-biofilm activity against Pseudomonas aeruginosa by attenuating quorum sensing. Front Microbiol 10:1269. https://doi.org/10.3389/fmicb.2019.01269

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liu G, Niu S, Liu L (2020) Alterchromanone A, one new chromanone derivative from the mangrove endophytic fungus Alternaria longipes. J Antibiot (Tokyo) 74:152–155. https://doi.org/10.1038/s41429-020-00364-4

    Article  CAS  PubMed  Google Scholar 

  134. Deng Q, Li G, Sun M, Yang X, Xu J (2020) A new antimicrobial sesquiterpene isolated from endophytic fungus Cytospora sp. from the Chinese mangrove plant Ceriops tagal. Nat Prod Res 34:1404–1408. https://doi.org/10.1080/14786419.2018.1512993

    Article  CAS  PubMed  Google Scholar 

  135. Xu Z, Wu X, Li G, Feng Z, Xu J (2020) Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Nat Prod Res 34:1002–1007. https://doi.org/10.1080/14786419.2018.1539980

    Article  CAS  PubMed  Google Scholar 

  136. Raghava Rao KV, Mani P, Satyanarayana B, Raghava Rao T (2017) Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavus BC 01 and their biological activity. 3 Biotech 7:24. https://doi.org/10.1007/s13205-016-0581-9

  137. Wang P, Kong F, Wei J, Wang Y, Wang W, Hong K, Zhu W (2014) Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar Drugs 12:477. https://doi.org/10.3390/MD12010477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44:6470–6474. https://doi.org/10.1021/es1007017

    Article  CAS  PubMed  Google Scholar 

  139. Yamakawa Y, Jog R, Morikawa M (2018) Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant Growth Regul 86:287–296. https://doi.org/10.1007/s10725-018-0428-y

    Article  CAS  Google Scholar 

  140. Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626. https://doi.org/10.1111/J.1574-6976.2008.00113.X

    Article  CAS  PubMed  Google Scholar 

  141. Miller IM (1990) Bacterial leaf nodule symbiosis. Adv Bot Res 17:163–234. https://doi.org/10.1016/S0065-2296(08)60134-2

    Article  Google Scholar 

  142. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618. https://doi.org/10.1007/S00248-010-9780-9

    Article  PubMed  Google Scholar 

  143. Aroumougame S, Mannan Geetha T, Thangaraju M (2020) Exploitation of PGPR endophytic Burkholderia isolates to enhance organic agriculture. Am J Biosci 8:64. https://doi.org/10.11648/J.AJBIO.20200803.12

  144. Pinedo I, Ledger T, Greve M, Poupin MJ (2015) Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci 6:1–17. https://doi.org/10.3389/fpls.2015.00466

    Article  Google Scholar 

  145. Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C, Jacquard C, Sanchez L, Barka EA (2018) Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Front Microbiol 9:2093

    Article  PubMed  PubMed Central  Google Scholar 

  146. Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L (2016) Burkholderia phytofirmans PsJN confers grapevine resistance against botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci 7:1236. https://doi.org/10.3389/fpls.2016.01236

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/J.TPLANTS.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  148. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323. https://doi.org/10.1111/J.1574-6976.2010.00249.X

    Article  CAS  PubMed  Google Scholar 

  149. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/J.TPLANTS.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  150. Bajpai A, Singh B, Joshi S, Johri BN (2018) Production and characterization of an antifungal compound from Pseudomonas protegens strain W45. Proc Natl Acad Sci India Sect B - Biol Sci 88:1081–1089. https://doi.org/10.1007/S40011-017-0844-1

    Article  CAS  Google Scholar 

  151. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. Microb Inoculants Sustain Agric Product Vol 1 Res Perspect 257–270. https://doi.org/10.1007/978-81-322-2647-5_15

  152. Rai A, Rai PK, Singh S (2017) Exploiting beneficial traits of plant-associated fluorescent pseudomonads for plant health. Agro-Environmental Sustain 1:19–41. https://doi.org/10.1007/978-3-319-49724-2_2

    Article  Google Scholar 

  153. Garbeva P, Van Veen JA, Van Elsas JD (2004) Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 47:51–64. https://doi.org/10.1016/S0168-6496(03)00234-4

    Article  CAS  PubMed  Google Scholar 

  154. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol (Stuttg) 9:4–20. https://doi.org/10.1055/S-2006-924473

    Article  CAS  PubMed  Google Scholar 

  155. Prabhukarthikeyan SR, Keerthana U, Raguchander T (2018) Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol Res 210:65–73. https://doi.org/10.1016/J.MICRES.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  156. Meyer SLF, Everts KL, Gardener BMS, Masler EP, Abdelnabby HME, Skantar AM (2016) Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. J Nematol 48:43–53. https://doi.org/10.21307/JOFNEM-2017-008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sheoran N, Valiya Nadakkakath A, Munjal V, Kundu A, Subaharan K, Venugopal V, Rajamma S, Eapen SJ, Kumar A (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78. https://doi.org/10.1016/J.MICRES.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  158. Andreote FD, De Araújo WL, De Azevedo JL, Van Elsas JD, Da Rocha UN, Van Overbeek LS (2009) Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl Environ Microbiol 75:3396. https://doi.org/10.1128/AEM.00491-09

  159. Herman MAB, Davidson JK, Smart CD (2008) Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology 98:1226–1232

    Article  CAS  PubMed  Google Scholar 

  160. Xie GH, Cui Z, Yu J, Yan J, Hai W, Steinberger Y (2006) Identification of nif genes in N2-fixing bacterial strains isolated from rice fields along the Yangtze River Plain. J Basic Microbiol 46:56–63. https://doi.org/10.1002/JOBM.200510513

    Article  CAS  PubMed  Google Scholar 

  161. Zhang Q, White JF (2021) Bioprospecting Desert plants for endophytic and biostimulant microbes: a strategy for enhancing agricultural production in a hotter, drier future. Biology (Basel) 10:.https://doi.org/10.3390/BIOLOGY10100961

  162. Berríos G, Cabrera G, Gidekel M, Gutiérrez-Moraga A (2013) Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with antarctic hair grass Deschampsia antarctica Desv. Polar Biol 36:349–362. https://doi.org/10.1007/S00300-012-1264-6

    Article  Google Scholar 

  163. Luna MF, Galar ML, Aprea J, Molinari ML, Boiardi JL (2010) Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnol Lett 32:1071–1076. https://doi.org/10.1007/S10529-010-0256-2

    Article  CAS  PubMed  Google Scholar 

  164. Delaporte-Quintana P, Grillo-Puertas M, Lovaisa NC, Teixeira KR, Rapisarda VA, Pedraza RO (2017) Contribution of Gluconacetobacter diazotrophicus to phosphorus nutrition in strawberry plants. Plant Soil 419:335–347. https://doi.org/10.1007/S11104-017-3349-Z

    Article  CAS  Google Scholar 

  165. Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 472(47):155–162. https://doi.org/10.1007/S10725-005-2847-9

    Article  Google Scholar 

  166. Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333. https://doi.org/10.3389/FMICB.2014.00333

    Article  PubMed  PubMed Central  Google Scholar 

  167. Patil N, Gajbhiye M, Ahiwale SS, Gunja AB, Kapadnis B (2011) Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus Ll isolated from sugarcane. Int J Environ Sci 2:295–302

    CAS  Google Scholar 

  168. Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140. https://doi.org/10.1007/S00248-007-9258-6

    Article  CAS  PubMed  Google Scholar 

  169. Blanco Y, Blanch M, Piñón D, Legaz ME, Vicente C (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99:366–371. https://doi.org/10.1263/JBB.99.366

    Article  CAS  PubMed  Google Scholar 

  170. Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de FigueiredoVilela L, Neves BC (2019) Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 8(8):e00801. https://doi.org/10.1002/MBO3.801

  171. Ben SH, Cherif-Silini H, Bouket AC, Silini A, Alenezi FN, Luptakova L, Vallat A, Belbahri L (2021) Biotechnology and bioinformatics of endophytes in biocontrol, bioremediation, and plant growth promotion. In: Maheshwari DK, Dheeman S (eds) Endophytes: Mineral Nutrient Management, vol 3. Springer, Cham, pp 181–205

    Google Scholar 

  172. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. https://doi.org/10.1111/J.1462-2920.2010.02258.X

    Article  PubMed  PubMed Central  Google Scholar 

  173. Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht, pp 95–105

  174. Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62. https://doi.org/10.3923/JM.2011.54.62

    Article  Google Scholar 

  175. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459

    Article  PubMed  Google Scholar 

  176. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A Phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297. https://doi.org/10.1093/SYSBIO/SYP001

    Article  PubMed  Google Scholar 

  177. Del Olmo-Ruiz M, Arnold AE (2017) Community structure of fern-affiliated endophytes in three neotropical forests. J Trop Ecol 33:60–73. https://doi.org/10.1017/S0266467416000535

    Article  Google Scholar 

  178. Sebastianes FLS, Cabedo N, El AN, Valente AMMP, Lacava PT, Azevedo JL, Pizzirani-Kleiner AA, Cortes D (2012) 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 5:622–632. https://doi.org/10.1007/S00284-012-0206-4

    Article  Google Scholar 

  179. Puri A, Padda KP, Chanway CP (2017) Beneficial effects of bacterial endophytes on forest tree species. In: Maheshwari DK, Annapurna K (eds) Endophytes: Crop Productivity and Protection, vol 2. Springer International Publishing, Cham, pp 111–132

    Chapter  Google Scholar 

  180. Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – review and future prospects. Biol Control 103:62–68. https://doi.org/10.1016/J.BIOCONTROL.2016.07.013

    Article  Google Scholar 

  181. Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67:421–430. https://doi.org/10.1016/J.BIOCONTROL.2013.09.012

    Article  Google Scholar 

  182. Terhonen E, Kovalchuk A, Zarsav A, Asiegbu FO (2018) Biocontrol potential of forest tree endophytes. In: Pirttilä AM, Frank AC (eds) Endophytes of Forest Trees: Forestry Sciences, vol 86. Springer International Publishing, Cham, pp 283–318

    Chapter  Google Scholar 

  183. U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Elizabeth Arnold A (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914. https://doi.org/10.3732/AJB.1100459

    Article  PubMed  Google Scholar 

  184. Osono T, Masuya H (2012) Endophytic fungi associated with leaves of Betulaceae in Japan. Can J Microbiol 58:507–515

    Article  CAS  PubMed  Google Scholar 

  185. Liarzi O, Bucki P, Miyara SB, Ezra D (2016) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11:e0168437. https://doi.org/10.1371/JOURNAL.PONE.0168437

  186. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 80(260):214–216. https://doi.org/10.1126/SCIENCE.8097061

    Article  Google Scholar 

  187. Terhonen E, Blumenstein K, Kovalchuk A, Asiegbu FO (2019) Forest tree microbiomes and associated fungal endophytes: functional roles and impact on forest health. Forests 10:42. https://doi.org/10.3390/F10010042

    Article  Google Scholar 

  188. Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17. https://doi.org/10.1016/J.BCP.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  189. Strobel G, Li JY, Sugawara F, Koshino H, Harper J, Hess WM (1999) Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology 145(Pt 12):3557–3564. https://doi.org/10.1099/00221287-145-12-3557

    Article  CAS  PubMed  Google Scholar 

  190. Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333. https://doi.org/10.1080/07388550290789531

    Article  CAS  PubMed  Google Scholar 

  191. Selvakumar V, Panneerselvam A (2018) Bioactive compounds from endophytic fungi. In: Gehlot P, Singh J (eds) Fungi and their Role in Sustainable Development: Current Perspective. Springer, Singapore, pp 699–717

    Chapter  Google Scholar 

  192. Jia Q, Qu J, Mu H, Sun H, Wu C (2020) Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 80:103–132. https://doi.org/10.1007/S13199-019-00663-X

    Article  CAS  Google Scholar 

  193. Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T, O’Connor T, O’Farrell PJ, Smith HG, Lindborg R (2019) Grasslands—more important for ecosystem services than you might think. Ecosphere 10:e02582. https://doi.org/10.1002/ECS2.2582

    Article  Google Scholar 

  194. Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol 29:205–213. https://doi.org/10.1016/J.TREE.2014.02.004

    Article  PubMed  Google Scholar 

  195. Hume DE, Ryan GD, Gibert A, Helander M, Mirlohi A, Sabzalian MR (2016) Epichloë fungal endophytes for grassland ecosystems. In: E. L (ed) Sustainable Agriculture Reviews. Springer, Cham, pp 233–305

  196. Porter JK (1995) Analysis of endophyte toxins: fescue and other grasses toxic to livestock. J Anim Sci 73:871–880. https://doi.org/10.2527/1995.733871X

    Article  CAS  PubMed  Google Scholar 

  197. Chujo T, Lukito Y, Eaton CJ, Dupont PY, Johnson LJ, Winter D, Cox MP, Scott B (2019) Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 125:71–83. https://doi.org/10.1016/J.FGB.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  198. Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol 208:1227–1240. https://doi.org/10.1111/NPH.13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jakubczyk D, Cheng JZ, O’Connor SE (2014) Biosynthesis of the ergot alkaloids. Nat Prod Rep 31:1328–1338. https://doi.org/10.1039/C4NP00062E

    Article  CAS  PubMed  Google Scholar 

  200. HuSt G, Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387. https://doi.org/10.1128/AEM.68.12.6383-6387.2002

    Article  CAS  Google Scholar 

  201. Barelli L, Moonjely S, Behie SW, Bidochka MJ (2016) Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol Biol 90:657–664. https://doi.org/10.1007/S11103-015-0413-Z

    Article  CAS  PubMed  Google Scholar 

  202. Wickens GE (1998) Arid and semi-arid environments of the world. In: Ecophysiology of Economic Plants in Arid and Semi-Arid Lands. Adaptations of Desert Organisms. Springer, Berlin, Heidelberg, pp 5–15. https://doi.org/10.1007/978-3-662-03700-3_2

  203. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/HESS-11-1633-2007

    Article  Google Scholar 

  204. Garcia-Moya E, Romero-Manzanares A, Nobel PS (2011) Highlights for agave productivity GCB Bioenergy 3:4–14. https://doi.org/10.1111/J.1757-1707.2010.01078.X

    Article  Google Scholar 

  205. Hernández-Hernández T, Brown JW, Schlumpberger BO, Eguiarte LE, Magallón S (2014) Beyond aridification: multiple explanations for the elevated diversification of cacti in the new world succulent biome. New Phytol 202:1382–1397. https://doi.org/10.1111/NPH.12752

    Article  PubMed  Google Scholar 

  206. Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol 7:150. https://doi.org/10.3389/FMICB.2016.00150

    Article  PubMed  PubMed Central  Google Scholar 

  207. Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American desert plants. Springer, Berlin Heidelberg

    Book  Google Scholar 

  208. Jiang H, Liu GL, Chi Z, Hu Z, Chi ZM (2018) Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments. Curr Genet 64:479–491. https://doi.org/10.1007/S00294-017-0762-Z

    Article  CAS  PubMed  Google Scholar 

  209. Laskowska E, Kuczyńska-Wiśnik D (2020) New insight into the mechanisms protecting bacteria during desiccation. Curr Genet 66:313. https://doi.org/10.1007/S00294-019-01036-Z

    Article  CAS  PubMed  Google Scholar 

  210. Citlali FG, Desgarennes D, Flores-Núñez VM, Partida-Martínez LP (2018) The microbiome of desert CAM plants: lessons from amplicon sequencing and metagenomics. Metagenomics Perspect Methods, Appl 231–254. https://doi.org/10.1016/B978-0-08-102268-9.00012-4

  211. Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root Colonization and Weathering of Igneous Rocks. Plant Biol 6:629–642. https://doi.org/10.1055/S-2004-821100

    Article  CAS  PubMed  Google Scholar 

  212. Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol 193:527–541. https://doi.org/10.1007/s00203-011-0695-8

    Article  CAS  PubMed  Google Scholar 

  213. Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP (2014) Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol 90:844–857. https://doi.org/10.1111/1574-6941.12438

    Article  CAS  PubMed  Google Scholar 

  214. Suleiman MK, Quoreshi AM, Bhat NR, Manuvel AJ, Sivadasan MT (2019) Divulging diazotrophic bacterial community structure in Kuwait desert ecosystems and their N2-fixation potential. PLoS ONE 14:e0220679. https://doi.org/10.1371/JOURNAL.PONE.0220679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90. https://doi.org/10.1007/S00248-006-9174-1

    Article  PubMed  Google Scholar 

  216. Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401. https://doi.org/10.1016/J.ENVEXPBOT.2009.04.010

    Article  CAS  Google Scholar 

  217. Camarena-Pozos DA, Flores-Núñez VM, López MG, López-Bucio J, Partida-Martínez LP (2019) Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ 42:1368–1380. https://doi.org/10.1111/PCE.13476

    Article  CAS  PubMed  Google Scholar 

  218. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811. https://doi.org/10.1111/NPH.13697

    Article  CAS  PubMed  Google Scholar 

  219. Lopez BR, Tinoco-Ojanguren C, Bacilio M, Mendoza A, Bashan Y (2012) Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environ Exp Bot 81:26–36. https://doi.org/10.1016/J.ENVEXPBOT.2012.02.014

    Article  CAS  Google Scholar 

  220. Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013) Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. J Plant Nutr Soil Sci 176:175–199. https://doi.org/10.1002/JPLN.201000360

    Article  CAS  Google Scholar 

  221. Lopez BR, Bacilio M (2020) Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils 56:447–459. https://doi.org/10.1007/S00374-020-01456-X

    Article  CAS  Google Scholar 

  222. Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1:193–212. https://doi.org/10.1146/annurev.marine.010908.163708

    Article  PubMed  PubMed Central  Google Scholar 

  223. Tait K, Joint I, Daykin M, Milton DL, Williams P, Cámara M (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240. https://doi.org/10.1111/j.1462-2920.2004.00706.x

    Article  CAS  PubMed  Google Scholar 

  224. Morrow KM, Bromhall K, Motti CA, Munn CB, Bourne DG (2017) Allelochemicals produced by brown macroalgae of the Lobophora genus are active against coral larvae and associated bacteria, Supporting Pathogenic Shifts. Appl Environ Microbiol 83:e02391-e2416. https://doi.org/10.1128/AEM.02391-16

    Article  CAS  PubMed  Google Scholar 

  225. Zan J, Li Z, Tianero MD, Davis J, Hill RT, Donia MS (2019) A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 80(364):eaaw6732. https://doi.org/10.1126/science.aaw6732

    Article  CAS  Google Scholar 

  226. Saha M, Goecke F, Bhadury P (2018) Minireview: algal natural compounds and extracts as antifoulants. J Appl Phycol 30:1859–1874. https://doi.org/10.1007/s10811-017-1322-0

    Article  CAS  PubMed  Google Scholar 

  227. Goecke F, Labes A, Wiese J, Imhoff JF (2013) Phylogenetic analysis and antibiotic activity of bacteria isolated from the surface of two co-occurring macroalgae from the Baltic Sea. Eur J Phycol 48:47–60. https://doi.org/10.1080/09670262.2013.767944

    Article  Google Scholar 

  228. Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292. https://doi.org/10.3389/fmicb.2012.00292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Antunes J, Leão P, Vasconcelos V (2019) Marine biofilms: diversity of communities and of chemical cues. Environ Microbiol Rep 11:287–305. https://doi.org/10.1111/1758-2229.12694

    Article  PubMed  Google Scholar 

  230. Sieg RD, Kubanek J (2013) Chemical ecology of marine angiosperms: opportunities at the interface of marine and terrestrial systems. J Chem Ecol 39:687–711. https://doi.org/10.1007/s10886-013-0297-9

    Article  CAS  PubMed  Google Scholar 

  231. Bassler BL (2002) Small talk cell-to-cell communication in bacteria. Cell 109:421–424. https://doi.org/10.1016/S0092-8674(02)00749-3

    Article  CAS  PubMed  Google Scholar 

  232. Zhou J, Lyu Y, Richlen ML, Anderson DM, Cai Z (2016) Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRC Crit Rev Plant Sci 35:81–105. https://doi.org/10.1080/07352689.2016.1172461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Polkade AV, Mantri SS, Patwekar UJ, Jangid K (2016) Quorum sensing: an under-explored phenomenon in the phylum Actinobacteria. Front Microbiol 7:131. https://doi.org/10.3389/fmicb.2016.00131

    Article  PubMed  PubMed Central  Google Scholar 

  234. D’Angelo-Picard C, Faure D, Carlier A, Uroz S, Raffoux A, Fray R, Dessaux Y (2004) Bacterial populations in the rhizosphere of tobacco plants producing the quorum-sensing signals hexanoyl-homoserine lactone and 3-oxo-hexanoyl-homoserine lactone. FEMS Microbiol Ecol 51:19–29. https://doi.org/10.1016/J.FEMSEC.2004.07.008

    Article  PubMed  Google Scholar 

  235. Elshafie HS, Devescovi G, Venturi V, Camele I, Bufo SA (2019) Study of the regulatory role of N-acyl homoserine lactones mediated quorum sensing in the biological activity of Burkholderia gladioli pv. agaricicola causing soft rot of Agaricus spp. Front Microbiol 10:2695. https://doi.org/10.3389/FMICB.2019.02695

  236. Saha M, Weinberger F (2019) Microbial “gardening” by a seaweed holobiont: surface metabolites attract protective and deter pathogenic epibacterial settlement. J Ecol 107:2255–2265. https://doi.org/10.1111/1365-2745.13193

    Article  CAS  Google Scholar 

  237. Romero M, Martin-Cuadrado A-B, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217. https://doi.org/10.1111/j.1574-6941.2010.01011.x

    Article  CAS  PubMed  Google Scholar 

  238. Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291. https://doi.org/10.1099/13500872-145-2-283

    Article  CAS  PubMed  Google Scholar 

  239. Schmidt R, Saha M (2021) Infochemicals in terrestrial plants and seaweed holobionts: current and future trends. New Phytol 229:1852–1860. https://doi.org/10.1111/NPH.16957

    Article  PubMed  Google Scholar 

  240. Menaa F, Wijesinghe PAUI, Thiripuranathar G, Uzair B, Iqbal H, Khan BA, Menaa B (2020) Ecological and industrial implications of dynamic seaweed-associated microbiota interactions. Mar Drugs 18:641. https://doi.org/10.3390/md18120641

    Article  PubMed  PubMed Central  Google Scholar 

  241. Ren C-G, Liu Z-Y, Wang X-L, Qin S (2022) The seaweed holobiont: from microecology to biotechnological applications. Microb Biotechnol. https://doi.org/10.1111/1751-7915.14014

    Article  PubMed  PubMed Central  Google Scholar 

  242. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

    Article  Google Scholar 

  243. Espadero ADA, Nakamura Y, Uy WH, Tongnunui P, Horinouchi M (2020) Tropical intertidal seagrass beds: an overlooked foraging habitat for fishes revealed by underwater videos. J Exp Mar Bio Ecol 526:151353. https://doi.org/10.1016/j.jembe.2020.151353

    Article  Google Scholar 

  244. Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C (2019) The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol Lett 366:fnz057. https://doi.org/10.1093/femsle/fnz057

  245. Matsuda R, Handayani ML, Sasaki H, Takechi K, Takano H, Takio S (2018) Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Arch Microbiol 200:255–265. https://doi.org/10.1007/s00203-017-1439-1

    Article  CAS  PubMed  Google Scholar 

  246. Celdrán D, Espinosa E, Sánchez-Amat A, Marín A (2012) Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica. Mar Ecol Prog Ser 456:21–27. https://doi.org/10.3354/meps09672

    Article  Google Scholar 

  247. Blanchet E, Prado S, Stien D, Oliveira da Silva J, Ferandin Y, Batailler N, Intertaglia L, Escargueil A, Lami R (2017) Quorum sensing and quorum quenching in the Mediterranean seagrass Posidonia oceanica microbiota. Front Mar Sci 4:218. https://doi.org/10.3389/fmars.2017.00218

    Article  Google Scholar 

  248. Marhaeni B, Karna Radjasa O, Bengen DG, Kaswadji FR (2011) Screening of bacterial symbionts of seagrass Enhalus sp. against biofilm-forming bacteria. J Coast Dev 13:126–132

    Google Scholar 

  249. Ettinger CL, Eisen JA (2020) Fungi, bacteria and oomycota opportunistically isolated from the seagrass. Zostera marina PLoS One 15:e0236135. https://doi.org/10.1371/journal.pone.0236135

    Article  CAS  PubMed  Google Scholar 

  250. Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65. https://doi.org/10.1016/j.funeco.2014.07.003

    Article  Google Scholar 

  251. Notarte KI, Yaguchi T, Suganuma K, dela Cruz TE (2018) Antibacterial, cytotoxic and trypanocidal activities of marine-derived fungi isolated from Philippine macroalgae and seagrasses. Acta Bot Croat 77:141–151. https://doi.org/10.2478/botcro-2018-0016

    Article  CAS  Google Scholar 

  252. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8:e72520. https://doi.org/10.1371/journal.pone.0072520

  253. Zidorn C (2016) Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): chemical diversity, bioactivity, and ecological function. Phytochemistry 124:5–28. https://doi.org/10.1016/j.phytochem.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  254. Guan C, Parrot D, Wiese J, Sönnichsen FD, Saha M, Tasdemir D, Weinberger F (2017) Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina. Biofouling 33:867–880. https://doi.org/10.1080/08927014.2017.1383399

    Article  CAS  PubMed  Google Scholar 

  255. Papazian S, Parrot D, Burýšková B, Weinberger F, Tasdemir D (2019) Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci Rep 9:3323. https://doi.org/10.1038/s41598-019-39212-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Alongi DM (2013) Mangrove–Microbe–Soil Relations. In: Kristensen E, Haese RR, Kostka JE (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union (AGU), pp 85–103

  257. Xu J (2015) Bioactive natural products derived from mangrove-associated microbes. RSC Adv 5:841–892. https://doi.org/10.1039/C4RA11756E

    Article  CAS  Google Scholar 

  258. Liu M, Huang H, Bao S, Tong Y (2019) Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep 9:8406. https://doi.org/10.1038/s41598-019-44788-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bibi SN, Gokhan Z, Rajesh J, Mahomoodally MF (2020) Fungal endophytes associated with mangroves – chemistry and biopharmaceutical potential. South African J Bot. https://doi.org/10.1016/j.sajb.2019.12.016

    Article  Google Scholar 

  260. Ancheeva E, Daletos G, Proksch P (2018) Lead compounds from mangrove-associated microorganisms. Mar Drugs 16:319. https://doi.org/10.3390/md16090319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lee NLY, Huang D, Quek ZBR, Lee JN, Wainwright BJ (2019) Mangrove-associated fungal communities are differentiated by geographic location and host structure. Front Microbiol 10:2456. https://doi.org/10.3389/fmicb.2019.02456

    Article  PubMed  PubMed Central  Google Scholar 

  262. Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 13:e0197359. https://doi.org/10.1371/journal.pone.0197359

  263. Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  264. Law JW-F, Pusparajah P, Ab Mutalib N-S, Wong SH, Goh B-H, Lee L-H (2019) A review on mangrove actinobacterial diversity: the roles of streptomyces and novel species discovery. Prog Microbes Mol Biol 2:a0000024. https://doi.org/10.36877/pmmb.a0000024

  265. Asaeda T, Barnuevo A (2019) Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For Ecol Manage 432:73–82. https://doi.org/10.1016/j.foreco.2018.09.015

    Article  Google Scholar 

  266. Ser H-L, Tan LT-H, Palanisamy UD, Abd Malek SN, Yin W-F, Chan K-G, Goh B-H, Lee L-H (2016) Streptomyces antioxidans sp. nov., a novel mangrove soil Actinobacterium with antioxidative and neuroprotective potentials. Front Microbiol 7:899. https://doi.org/10.3389/fmicb.2016.00899

  267. Ravindran C, Naveenan T, Varatharajan GR, Rajasabapath R, Meena RM (2012) Antioxidants in mangrove plants and endophytic fungal associations. Bot Mar 55:269–279. https://doi.org/10.1515/bot-2011-0095

    Article  CAS  Google Scholar 

  268. Chen S, Cai R, Liu Z, Cui H, She Z (2022) Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 39:560–595. https://doi.org/10.1039/D1NP00041A

    Article  CAS  PubMed  Google Scholar 

  269. Gross EM, Bakker ES (2012) The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions. In: Iason GR, Dicke M, Hartley SE (eds) The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, Cambridge, pp 154–169

    Chapter  Google Scholar 

  270. Burks RL, Lodge DM (2002) Cued in advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917. https://doi.org/10.1023/A:1020785525081

    Article  CAS  PubMed  Google Scholar 

  271. Ishizawa H, Kuroda M, Morikawa M, Ike M (2017) Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol Biofuels 10:62. https://doi.org/10.1186/s13068-017-0746-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Utami D, Kawahata A, Sugawara M, Jog RN, Miwa K, Morikawa M (2018) Effect of exogenous general plant growth regulators on the growth of the duckweed Lemna minor. Front Chem 6:251. https://doi.org/10.3389/fchem.2018.00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Ishizawa H, Kuroda M, Inoue K, Inoue D, Morikawa M, Ike M (2019) Colonization and competition dynamics of plant growth-promoting/inhibiting bacteria in the phytosphere of the duckweed Lemna minor. Microb Ecol 77:440–450. https://doi.org/10.1007/s00248-018-1306-x

    Article  CAS  PubMed  Google Scholar 

  274. Torres M, Dessaux Y, Llamas I (2019) Saline environments as a source of potential quorum sensing disruptors to control bacterial infections: a review. Mar Drugs 17:191. https://doi.org/10.3390/md17030191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Otte ML, Wilson G, Morris JT, Moran BM (2004) Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J Exp Bot 55:1919–1925. https://doi.org/10.1093/jxb/erh178

    Article  CAS  PubMed  Google Scholar 

  276. Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T (2018) Macroalgal-bacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol 27:1808–1819. https://doi.org/10.1111/mec.14472

    Article  CAS  PubMed  Google Scholar 

  277. Saha M, Rempt M, Gebser B, Grueneberg J, Pohnert G, Weinberger F (2012) Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment. Biofouling 28:593–604. https://doi.org/10.1080/08927014.2012.698615

    Article  CAS  PubMed  Google Scholar 

  278. Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol 64:450–460. https://doi.org/10.1007/S00248-012-0025-Y

    Article  PubMed  Google Scholar 

  279. Zhang Q, Wu J, Yang F, Lei Y, Zhang Q, Cheng X (2016) Alterations in soil microbial community composition and biomass following agricultural land use change. Sci Reports 61(6):1–10. https://doi.org/10.1038/srep36587

    Article  CAS  Google Scholar 

  280. Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agric 71:528–539. https://doi.org/10.1590/0103-9016-2014-0195

    Article  Google Scholar 

  281. Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Sobti R, Arora N, Kothari R (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore, pp 129–173

    Chapter  Google Scholar 

  282. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/S13213-010-0117-1

    Article  Google Scholar 

  283. Mishra D, Rajvir S, Mishra UK, Sudhir Kumar S (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  284. Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. African J Microbiol Res 8:2332–2343. https://doi.org/10.5897/AJMR2013.6374

    Article  Google Scholar 

  285. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. https://doi.org/10.1007/S10529-010-0347-0

    Article  CAS  PubMed  Google Scholar 

  286. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Bashan Y, De-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/S11104-013-1956-X

    Article  CAS  Google Scholar 

  288. Kumar A, Patel JS, Meena VS, Ramteke PW (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutr 42:1402–1415. https://doi.org/10.1080/01904167.2019.1616757

    Article  CAS  Google Scholar 

  289. Sharma G, Mathur V (2020) Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiol Ecol 96. https://doi.org/10.1093/FEMSEC/FIAA040

  290. Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/J.MICRES.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  291. Guo B, Wang Y, Sun X (2008) Tang K (2011) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 442(44):136–142. https://doi.org/10.1134/S0003683808020026

    Article  Google Scholar 

  292. Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens: a review. Spanish J Agric Res 6:138–146. https://doi.org/10.5424/SJAR/200806S1-382

    Article  Google Scholar 

  293. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE (2016) The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 47:1–24

    Article  Google Scholar 

  294. García-Nieto AP, Quintas-Soriano C, García-Llorente M, Palomo I, Montes C, Martín-López B (2015) Collaborative mapping of ecosystem services: the role of stakeholders׳ profiles. Ecosyst Serv 13:141–152. https://doi.org/10.1016/J.ECOSER.2014.11.006

    Article  Google Scholar 

  295. Zhou Z, Wang C (2020) Luo Y (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun 111(11):1–10. https://doi.org/10.1038/s41467-020-16881-7

    Article  CAS  Google Scholar 

  296. Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30

    Article  Google Scholar 

  297. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. Oxford University Press

    Google Scholar 

  298. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 28(2):805–814. https://doi.org/10.1038/ismej.2008.58

    Article  CAS  Google Scholar 

  299. van der Loos LM, Eriksson BK, Falcão Salles J (2019) The macroalgal holobiont in a changing sea. Trends Microbiol 27:635–650. https://doi.org/10.1016/J.TIM.2019.03.002

    Article  PubMed  Google Scholar 

  300. Johnson RM, Pregitzer KS (2007) Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3. Soil Biol Biochem 39:3159–3166. https://doi.org/10.1016/J.SOILBIO.2007.07.010

    Article  CAS  Google Scholar 

  301. Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3:363–377. https://doi.org/10.1046/J.1365-2486.1997.T01-1-00088.X

    Article  Google Scholar 

  302. Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357. https://doi.org/10.2307/3544308

    Article  CAS  Google Scholar 

  303. Hunt MG, Rasmussen S, Newton PCD, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354. https://doi.org/10.1111/J.1365-3040.2005.01367.X

    Article  CAS  Google Scholar 

  304. Rho H, Doty SL, Kim SH (2020) Endophytes alleviate the elevated CO2-dependent decrease in photosynthesis in rice, particularly under nitrogen limitation. J Exp Bot 71:707–718. https://doi.org/10.1093/JXB/ERZ440

    Article  CAS  PubMed  Google Scholar 

  305. Chen W, Liu H, Wurihan GY, Card SD, Ren A (2017) The advantages of endophyte-infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO2. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-07183-y

    Article  CAS  Google Scholar 

  306. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127. https://doi.org/10.1086/342161

    Article  PubMed  Google Scholar 

  307. Rua MA, McCulley RL, Mitchell CE (2013) Fungal endophyte infection and host genetic background jointly modulate host response to an aphid-transmitted viral pathogen. J Ecol 101:1007–1018

    Article  Google Scholar 

  308. Pérez LI, Gundel PE, Ghersa CM, Omacini M (2013) Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol 6:379–386. https://doi.org/10.1016/J.FUNECO.2013.06.006

    Article  Google Scholar 

  309. Allison I (2015) The science of climate change questions and answers. Australian Academy of Science

  310. Das S, Mangwani N (2015) Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57:349–361. https://doi.org/10.1016/J.OCEANO.2015.07.003

    Article  Google Scholar 

  311. Qiu Z, Coleman MA, Provost E, Campbell AH, Kelaher BP, Dalton SJ, Thomas T, Steinberg PD, Marzinelli EM (2019) Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc R Soc B Biol Sci 286. https://doi.org/10.1098/rspb.2018.1887

  312. Mensch B, Neulinger SC, Künzel S, Wahl M, Schmitz RA (2020) Warming, but not acidification, restructures epibacterial communities of the Baltic macroalga Fucus vesiculosus with seasonal variability. Front Microbiol 11:1471. https://doi.org/10.3389/fmicb.2020.01471

    Article  PubMed  PubMed Central  Google Scholar 

  313. Raddatz S, Guy-Haim T, Rilov G, Wahl M (2017) Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). J Phycol 53:44–58. https://doi.org/10.1111/jpy.12473

    Article  PubMed  Google Scholar 

  314. Kumar A, Buia MC, Palumbo A, Mohany M, Wadaan MAM, Hozzein WN, Beemster GTS, AbdElgawad H (2020) Ocean acidification affects biological activities of seaweeds: a case study of Sargassum vulgare from Ischia volcanic CO2 vents. Environ Pollut 259:113765. https://doi.org/10.1016/J.ENVPOL.2019.113765

    Article  CAS  PubMed  Google Scholar 

  315. Guan C, Saha M, Weinberger F (2020) Simulated heatwaves lead to upregulated chemical defense of a marine foundation macrophyte against microbial colonizers. Front Mar Sci 7:463. https://doi.org/10.3389/fmars.2020.00463

    Article  Google Scholar 

  316. Saha M, Rempt M, Stratil SB, Wahl M, Pohnert G, Weinberger F (2014) Defence chemistry modulation by light and temperature shifts and the resulting effects on associated epibacteria of Fucus vesiculosus. PLoS ONE 9:e105333. https://doi.org/10.1371/JOURNAL.PONE.0105333

    Article  PubMed  PubMed Central  Google Scholar 

  317. Minich JJ, Morris MM, Brown M, Doane M, Edwards MS, Michael TP, Dinsdale EA (2018) Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 13:e0192772. https://doi.org/10.1371/journal.pone.0192772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Cambell AH, Harder T, Nielsen S, Kjelleberg S, Steinberg PD (2011) Climate change and disease: bleaching of a chemically defended seaweed. Glob Chang Biol 17:2958–2970. https://doi.org/10.1111/j.1365-2486.2011.02456.x

    Article  Google Scholar 

  319. Roggatz CC, Lorch M, Hardege JD, Benoit DM (2016) Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Glob Chang Biol 22:3914–3926. https://doi.org/10.1111/gcb.13354

    Article  PubMed  Google Scholar 

  320. Roggatz CC, Fletcher N, Benoit DM, Algar AC, Doroff A, Wright B, Wollenberg Valero KC, Hardege JD (2019) Saxitoxin and tetrodotoxin bioavailability increases in future oceans. Nat Clim Chang 9:840–844. https://doi.org/10.1038/s41558-019-0589-3

    Article  CAS  Google Scholar 

  321. Honour SL, Bell JNB, Ashenden TW, Cape JN, Power SA (2009) Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics. Environ Pollut 157:1279–1286

    Article  CAS  PubMed  Google Scholar 

  322. Izuta T (2017) Air pollution impacts on plants in East Asia. Air Pollut Impacts Plants East Asia 1–322. https://doi.org/10.1007/978-4-431-56438-6

  323. Locosselli GM, de Camargo EP, Moreira TCL, Todesco E, de Fátima AM, de André CDS, de André PA, Singer JM, Ferreira LS, Saldiva PHN (2019) The role of air pollution and climate on the growth of urban trees. Sci Total Environ 666:652–661

    Article  CAS  PubMed  Google Scholar 

  324. Bandopadhyay S, Martin-Closas L, Pelacho AM, DeBruyn JM (2018) Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front Microbiol 9:819. https://doi.org/10.3389/FMICB.2018.00819

    Article  PubMed  PubMed Central  Google Scholar 

  325. Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, Garbeva P (2020) Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 387:121711. https://doi.org/10.1016/J.JHAZMAT.2019.121711

    Article  CAS  PubMed  Google Scholar 

  326. Kisku GC, Barman SC, Bhargava SK (2000) Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, Soil Pollut 1201(120):121–137. https://doi.org/10.1023/A:1005202304584

    Article  Google Scholar 

  327. Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K (2019) Sources of soil pollution by heavy metals and their accumulation in vegetables: a review. Water Air Soil Pollut 230:1–9. https://doi.org/10.1007/S11270-019-4221-Y

    Article  CAS  Google Scholar 

  328. He J, Bazzaz FA, Schmid B (2002) Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos 97:337–348

    Article  CAS  Google Scholar 

  329. Wolfe ER, Kautz S, Singleton SL, Ballhorn DJ (2018) Differences in foliar endophyte communities of red alder (Alnus rubra) exposed to varying air pollutant levels. Botany 96:825–835. https://doi.org/10.1139/CJB-2018-0085

    Article  CAS  Google Scholar 

  330. Sharma G, Rahul GR, Mathur V (2020) Differences in plant metabolites and microbes associated with Azadirachta indica with variation in air pollution. Environ Pollut 257:113595. https://doi.org/10.1016/J.ENVPOL.2019.113595

    Article  CAS  PubMed  Google Scholar 

  331. Tiling K, Proffitt CE (2017) Effects of Lyngbya majuscula blooms on the seagrass Halodule wrightii and resident invertebrates. Harmful Algae 62:104–112. https://doi.org/10.1016/j.hal.2016.11.015

    Article  PubMed  Google Scholar 

  332. Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, Kendrick GA (2018) Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front Microbiol 8:2667. https://doi.org/10.3389/FMICB.2017.02667

    Article  PubMed  PubMed Central  Google Scholar 

  333. Mishra B, Varjani S, Kumar G, Awasthi MK, Awasthi SK, Sindhu R, Binod P, Rene ER, Zhang Z (2020) Microbial approaches for remediation of pollutants innovations future outlook and challenges. Energy & Enviroment 32:1029–1058. https://doi.org/10.1016/j.hal.2016.11.015

    Article  Google Scholar 

  334. Gaur N, Narasimhulu K, PydiSetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631. https://doi.org/10.1016/J.JCLEPRO.2018.07.076

    Article  CAS  Google Scholar 

  335. Zuo W, Yu Y, Huang H (2021) Making waves: microbe-photocatalyst hybrids may provide new opportunities for treating heavy metal polluted wastewater. Water Res 195:116984. https://doi.org/10.1016/j.watres.2021.116984

    Article  CAS  PubMed  Google Scholar 

  336. Tiwari N, Santhiya D, Sharma JG (2020) Microbial remediation of micro-nano plastics: current knowledge and future trends. Environ Pollut 265:115044. https://doi.org/10.1016/j.envpol.2020.115044

    Article  CAS  PubMed  Google Scholar 

  337. Huang CL, Sarkar R, Hsu TW, Yang CF, Chien CH, Chang WC, Chiang TY (2020) Endophytic microbiome of biofuel plant Miscanthus sinensis (Poaceae) interacts with environmental gradients. Microb Ecol 80:133–144. https://doi.org/10.1007/S00248-019-01467-8

    Article  CAS  PubMed  Google Scholar 

  338. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/J.BIOTECHADV.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  339. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598. https://doi.org/10.1016/J.TIBTECH.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  340. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272. https://doi.org/10.1007/S00374-005-0024-Y

    Article  CAS  Google Scholar 

  341. Sapre S, Gontia-Mishra I, Tiwari S (2019) ACC deaminase-producing bacteria: a key player in alleviating abiotic stresses in plants. In: Kumar A, Meena V (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Springer, Singapore, pp 267–291

    Chapter  Google Scholar 

  342. Hesse E, O’Brien S, Tromas N, Bayer F, Luján AM, van Veen EM, Hodgson DJ, Buckling A (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett 21:117–127

    Article  PubMed  Google Scholar 

  343. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/FMICB.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  344. Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604. https://doi.org/10.3390/ijms161025576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Huang PM, Wang MK, Chiu CY (2005) Soil mineral–organic matter–microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia (Jena) 49:609–635. https://doi.org/10.1016/J.PEDOBI.2005.06.006

    Article  CAS  Google Scholar 

  346. Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504. https://doi.org/10.3390/IJERPH14121504

    Article  PubMed  PubMed Central  Google Scholar 

  347. Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Van Nostrand JD, Zhou J, Mortazavi B, Sobecky PA (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill. PLoS ONE 7:e41305. https://doi.org/10.1371/journal.pone.0041305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Kandalepas D, Blum MJ, Van Bael SA (2015) Shifts in symbiotic endophyte communities of a foundational salt marsh grass following oil exposure from the Deepwater Horizon oil spill. PLoS ONE 10:e0122378. https://doi.org/10.1371/journal.pone.0122378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Stout L, Nüsslein K (2010) Biotechnological potential of aquatic plant–microbe interactions. Curr Opin Biotechnol 21:339–345. https://doi.org/10.1016/j.copbio.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  350. Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109. https://doi.org/10.14348/MOLCELLS.2014.2239

  351. Azad K, Kaminskyj S (2016) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68:73–78. https://doi.org/10.1007/S13199-015-0370-Y

    Article  CAS  Google Scholar 

  352. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823. https://doi.org/10.1371/JOURNAL.PONE.0014823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. de Lamo FJ, Šimkovicová M, Fresno DH, de Groot T, Tintor N, Rep M, Takken FLW (2021) Pattern-triggered immunity restricts host colonization by endophytic fusaria, but does not affect endophyte-mediated resistance. Mol Plant Pathol 22:204–215. https://doi.org/10.1111/MPP.13018

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Garima Sharma (API lab, SVC, India) for her comments on the manuscript and Dr. Debarati Sen (Assistant Professor Department of English, SVC, India) for her English corrections. VM and DU acknowledge SERB (Ministry of S&T, Govt. of India) grant no. ECR/2017/001466 and Four-Dimensional Kuroshio Marine Science (4D-KMS) Project (Ministry of Education, Culture, Sports, Science and Technology, Japan), respectively, for financial support to conduct studies in this field.

Author information

Authors and Affiliations

Authors

Contributions

Vartika Mathur and Dana Ulanova: Conceptualization, writing (original draft preparation), writing (review and editing), and funding acquisition.

Corresponding authors

Correspondence to Vartika Mathur or Dana Ulanova.

Ethics declarations

Ethics Approval

Not applicable in this case.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, V., Ulanova, D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. Microb Ecol 86, 25–48 (2023). https://doi.org/10.1007/s00248-022-02073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02073-x

Keywords

Navigation