Skip to main content

Advertisement

Log in

How is protein aggregation in amyloidogenic diseases modulated by biological membranes?

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The fate of proteins with amyloidogenic properties depends critically on their immediate biochemical environment. However, the role of biological interfaces such as membrane surfaces, as promoters of pathological aggregation of amyloidogenic proteins, is rarely studied and only established for the amyloid-β protein (Aβ) involved in Alzheimer’s disease, and α-synuclein in Parkinsonism. The occurrence of binding and misfolding of these proteins on membrane surfaces, is poorly understood, not at least due to the two-dimensional character of this event. Clearly, the nature of the folding pathway for Aβ protein adsorbed upon two-dimensional aggregation templates, must be fundamentally different from the three-dimensional situation in solution. Here, we summarize the current research and focus on the function of membrane interfaces as aggregation templates for amyloidogenic proteins (and even prionic ones). One major aspect will be the relationship between membrane properties and protein association and the consequences for amyloidogenic products. The other focus will be on a general understanding of protein folding pathways on two-dimensional templates on a molecular level. Finally, we will demonstrate the potential importance of membrane-mediated aggregation for non-amphiphatic soluble amyloidogenic proteins, by using the SOD1 protein involved in the amyotrophic lateral sclerosis syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balakrishnan S, Goodwin H, Cumings JN (1961) The distribution of phosphorus-containing lipid compounds in the human brain. J Neurochem 8:276–284

    Article  Google Scholar 

  • Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, Lam Y-H, Carrington D, Tew D, Kocak G, Volitakis I, Separovic F, Barrow CJ, Wade JD, Masters CL, Cherny RA, Curtain CC, Bush AI, Cappai R (2003) Neurotoxic, redox-competent Alzheimer’s β amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 278:42959–42965

    Article  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  Google Scholar 

  • Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31:465–472

    Article  Google Scholar 

  • Bokvist M, Lindström F, Watts A, Gröbner G (2004) Two types of Alzheimer’s β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049

    Article  Google Scholar 

  • Bonev BB, Chan WC, Bycroft BW, Roberts GCK, Watts A (2000) Interaction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study. Biochemistry 39:11425–11433

    Article  Google Scholar 

  • Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  ADS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for peptide misfolding diseases. Nature 416:507–511

    Article  ADS  Google Scholar 

  • Carbone MA, Macdonald PM (1996) Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: P-31 and H-2 NMR spectroscopic evidence. Biochemistry 35:3368–3378

    Article  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  Google Scholar 

  • Curtain CC, Ali FE, Smith DG, Bush AI, Masters CL, Barnham KJ (2003) Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-β peptide with membrane lipid. J Biol Chem 278:2977–2982

    Article  Google Scholar 

  • Dai XL, Sun YX, Jiang ZF (2006) Cu (II) potentiation of Alzheimer Abeta 1–40. cytotoxicity and transition on its secondary structure. Acta Biochim Biophys Sin (Shanghai) 38:765–772

    Article  Google Scholar 

  • Danielsson J, Pierattelli R, Banci L, Gräslund A (2007) High-resolution NMR studies of the zinc-binding site of the Alzheimer’s amyloid β-peptide. FEBS J 274:46–59

    Article  Google Scholar 

  • Demmester N, Baier G, Enzinger C, Goethals M, Vandekerckhove J, Rosseneu M, Labeur C (2000) Apoptosis induced in neuronal cells by C-terminal amyloid β-fragments is correlated with their aggregation properties in phospholipid membranes. Mol Membr Biol 17:219–228

    Article  Google Scholar 

  • Devanathan S, Salamon Z, Lindblom G, Gröbner G, Tollin G (2006) Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and oligomerization of the amyloid Aβ1–42 peptide in solid-supported lipid bilayers. FEBS J 273:1389–1402

    Article  Google Scholar 

  • Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB (1994) Theoretical models of the ion channel structure of amyloid β-protein. Biophys J 67:2137–2145

    Article  Google Scholar 

  • Ege C, Mayewski WG, Kjaer K, Lee KYC (2005) Templating effect of lipid membranes on Alzheimer’s amyloid beta peptide. Chem Phys Chem 6:226–229

    Google Scholar 

  • Fernandez A, Berry RS (2003) Proteins with H-bond packing defects are highly interactive with lipid bilayers: implications for amyloidogenesis. Proc Natl Acad Sci USA 100:2391–2396

    Article  ADS  Google Scholar 

  • Fernandez A, Kardos J, Scott LR, Goto Y, Berry RS (2003) Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci USA 100:6446–6451

    Article  ADS  Google Scholar 

  • Giacomelli CE, Norde W (2005) Conformational changes of the amyloid β-peptide (1–40) adsorbed on solid surfaces. Macromol Biosci 5:401–407

    Article  Google Scholar 

  • Gibson Wood W, Eckert GP, Igbavboa U, Müller WE (2003) Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer’s disease. Biochim Biophys Acta 1610:281–290

    Article  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neuro-biology of aging 4:570–575

    Article  Google Scholar 

  • Grimm MOW, Grimm HS, Pätzold AJ, Zinser EG, Halonen R, Duering M, Tschäpe J-A, De Strooper B, Mueller U, Shen J, Hartmann T (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nature Cell Biol 11:1118–1123

    Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of β-amyloid precursor peptide and the genesis of amyloid beta-peptide. Cell 75:1039–1042

    Article  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Mol Cell Biol 8:101–112

    Article  Google Scholar 

  • Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in-vitro of β-amyloid peptide. Biochem J 311:1–16

    Google Scholar 

  • Jimenez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18:815–821

    Article  Google Scholar 

  • Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2002) Interactions of amyloid β-peptide with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41:7385–7390

    Article  Google Scholar 

  • Kawahara M, Kuroda Y, Arispe N, Rojas E (2000) Alzheimer’s β-amyloid, human islet amylin, and prion peptide fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J Biol Chem 275:14077–14083

    Article  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe C (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  ADS  Google Scholar 

  • Klein WL, Stine WB Jr, Teplow DB (2004) Small assemblies of unmodified amyloid-β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol Aging 25:569–580

    Article  Google Scholar 

  • Kong GK-W, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW (2007) Structural studies of the Alzheimer’s amyloid precursor protein copper-binding domain reveal how it binds copper ions. J Mol Biol 367:148–161

    Article  Google Scholar 

  • Kuchinka E, Seelig J (1989) Interaction of melittin with phosphatidylcholine membranes: binding isotherm and lipid headgroup conformation. Biochemistry 28:4216–4221

    Article  Google Scholar 

  • Lansbury PT Jr (1999) Evolution of amyloid: what normal peptide folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 96:3342–3344

    Article  ADS  Google Scholar 

  • Lau TL, Ambroggio EE, Tew JD, Cappai R, Masters CL, Fidelio GD, Barnham KJ, Separovic F (2006) Amyloid-β peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 356:759–770

    Article  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid-β protein forms ion channels: implications for Alzheimer’s disease pathology. FASEB J 15:2433–2444

    Article  Google Scholar 

  • Lindberg MJ, Bystrom R, Boknas N, Andersen PM, Oliveberg M (2005). Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc Natl Acad Sci USA 102:9754–9759

    Article  ADS  Google Scholar 

  • Lindström F, Bokvist M, Sparrman T, Gröbner G (2002) Association of amyloid-β peptide with membrane surfaces monitored by solid state NMR. Phys Chem Chem Phys 4:5524–5530

    Article  Google Scholar 

  • Lindström F, Williamson PTF, Gröbner G (2005) Molecular insight into the electrostatic membrane surface potential by 14N/31P MAS NMR spectroscopy: nociceptin–lipid association. J Am Chem Soc 127:6610–6616

    Article  Google Scholar 

  • Liu J, Lillo C, Jonsson PA, Velde CV, Ward CM, Miller TM, Subramaniam JR, Rothstein JD, Marklund S, Andersen PM, Brännström T, Gredal O, Wong PC, Williams DS, Cleveland DW (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43:5–17

    Article  MATH  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  ADS  Google Scholar 

  • McLaurin J, Yang D-S, Yip CM, Fraser PE (2000) Review: modulating factors in amyloid-β fibril formation. J Struct Biol 130:259–270

    Article  Google Scholar 

  • Minton AP (1999) Adsorption of globular proteins on locally planar surfaces. II. models for the effect of multiple adsorpate conformations on adsorption equilibria and kinetics. Biophys J 76:176–187

    Google Scholar 

  • Pinheiro TJT, Watts A (1994) Resolution of individual lipids in mixed phospholipid-membranes and specific lipid cytochrome-C interactions by magic-angle-spinning solid-state P-31 NMR. Biochemistry 33:2459–2467

    Article  Google Scholar 

  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting A beta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Article  Google Scholar 

  • Rochet J-C, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  Google Scholar 

  • Rochet J-C, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, Bieganski RM, Lindquist SL, Lansbury PT (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci 23:23–33

    Article  Google Scholar 

  • Scheuermann S, Hambsch B, Hesse L, Stumm J, Schmidt C, Beher D, Bayer TA Beyreuther K, Multhaup G (2001) Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer’s disease. J Biol Chem 276:33923–33929

    Article  Google Scholar 

  • Seelig J (1978) 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta 515:105–140

    Google Scholar 

  • Selkoe DJ (2004) Review: cell biology of misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss of modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  Google Scholar 

  • Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K, (1998) Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464

    Article  ADS  Google Scholar 

  • Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau T-L, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ (2006) Copper-mediated amyloid-β toxicity is associated with an intermolecular histidine bridge. J Biol Chem 281:15145–15154

    Article  Google Scholar 

  • Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, Barnham KJ, Cappai R (2007) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemistry 46:2881–2891

    Article  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 48:1051–158

    Article  Google Scholar 

  • Sparr E, Engel M, Sakharov D, Sprong M, Jacobs J, de Kruijff B, Höppener J, Killian JA (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120

    Article  Google Scholar 

  • Terzi E, Hölzemann G, Seelig A (1995) Self-association of beta-amyloid peptide (1–40) in solution and binding to lipid-membranes. J Mol Biol 252:633–642

    Article  Google Scholar 

  • Terzi E, Hölzemann G, Seelig J (1997) Interaction of Alzheimer β-amyloid peptide (1–40) with lipid membranes. Biochemistry 36:14845–14852

    Article  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-peptide fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    Article  Google Scholar 

  • Walsh D, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid β-peptide begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    Article  Google Scholar 

  • Waschuk SA, Elton EA, Darabie AA, Fraser PE, McLaurin J (2001) Cellular membrane composition defines Aβ-lipid interactions. J Biol Chem 276:33561–33568

    Article  Google Scholar 

  • Wieprecht T, Apostolov O, Beyermann M, Seelig J (2000) Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 2000:442–452

    Article  Google Scholar 

  • Zetterström P, Stewart HG, Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brännström T, Oliveberg M, Marklund SL (2007) Soluble misfolded subfractions of mutant superoxide dismutase-1s are enriched in spinal cords throughout life in murine ALS models. Proc Natl Acad Sci USA 104:104–135

    Article  Google Scholar 

  • Zhao H, Tuominen EKJ, Kinnunen PKJ (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43:10302–10307

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Knut and Alice Wallenberg Foundation, Swedish Research Council (NT and Medicine), Umeå University Biotechnology Fund, Natural Science Faculty and Alzheimer Foundation. We thank M. Oliveberg, S. Marklund, G. Lindblom, L. Johansson and E. Rosenbaum for all their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gröbner.

Additional information

Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aisenbrey, C., Borowik, T., Byström, R. et al. How is protein aggregation in amyloidogenic diseases modulated by biological membranes?. Eur Biophys J 37, 247–255 (2008). https://doi.org/10.1007/s00249-007-0237-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0237-0

Keywords

Navigation