Skip to main content
Log in

An XAS study of the sulfur environment in human neuromelanin and its synthetic analogs

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Neuromelanin is a complex molecule accumulating in the catecholaminergic neurons that undergo a degenerative process in Parkinson’s disease. It has been shown to play either a protective or a toxic role depending on whether it is present in the intraneuronal or extraneuronal milieu. Understanding its structure and synthesis mechanisms is mandatory to clarify the reason for this remarkable dual behavior. In the present study, X-ray absorption spectroscopy is employed to investigate the sulfur binding mode in natural human neuromelanin, synthetic neuromelanins, and in certain structurally known model compounds, namely cysteine and decarboxytrichochrome C. Based on comparative fits of human and synthetic neuromelanin spectra in terms of those of model compounds, the occurrence of both cysteine- and trichochrome-like sulfur coordination modes is recognized, and the relative abundance of these two types of structural arrangement is determined. Data on the amount of cysteine- and trichochrome-like sulfur measured in this way indicate that among the synthetic neuromelanins those produced by enzymatic oxidation are the most similar ones to natural neuromelanin. The interest of the method described here lies in the fact that it allows the identification of different sulfur coordination environments in a physically nondestructive way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. As discussed in Stellato et al. (2006), the two spectra are different because different sample preparations lead to different structural atomic arrangements around the Zn binding site.

  2. In fact, at an incoming photon energy of 10.7 keV, the number of counts per data point in a single fluorescence detector element, integrated from 0 keV to infinity, was found to be T 1 = 183,156 for Zn1 and T 2 = 171,191 for Zn2. Correspondingly the Zn K-fluorescence is K 1 = 16,935 for Zn1 and K 2 = 8,130 for Zn2. With these numbers one gets R 1 = T 1 /K 1 = 10.82, R 2 = T 2 /K 2 = 21.056 and finally R 2 /R 1  = 2.1 ± 0.2, in very good agreement with Eq. 2.

  3. The possibility of attributing edge energy differences to different S oxidation states looks implausible. Indeed, systematic studies (Prietzel et al. 2003; George and Gorbaty 1989) on S compounds have shown that samples where S is present in different oxidation states may have the same edge energy, and conversely different geometries with S in the same oxidation state lead to appreciable differences (even on the order of a few eVs) in the edge energy position.

  4. The interpretation of Eq. 7 is the following. If the spectrum of compound j is fitted in terms of the spectra of compounds m and n, then the resulting value of p [j,mn] should be the same as the one we would obtain multiplying the percentages characterizing the fit of sample j in terms of the compounds k and l, by the values one gets by fitting the spectra of the latter in terms of the spectra of the original compounds m and n. For completeness we notice the formal properties of the p [j,mn] coefficients, p [j,mn] = 1−p [j,nm], p [j,jm] = 1, p [j,jm] = 0.

Abbreviations

DAC:

Auto-oxidation of dopamine and cysteine

DEC:

Enzymatic oxidation of dopamine and cysteine

DOPEC:

l-DOPA and cysteine enzymatic oxidation

EDTA:

Ethylenediaminetetraacetic acid

EXAFS:

Extended X-ray absorption fine structure

NM:

Neuromelanin

PD:

Parkinson’s disease

TEY:

Total electron yield

XAS:

X-ray absorption spectroscopy

XANES:

X-ray absorption near edge structure

References

  • Backnaes L, Stelling J, Behrens H, Goettlicher J, Mangold S, Verheijen O, Beerkens RGC, Deubenerz J (2008) Dissolution mechanisms of tetravalent sulphur in silicate melts: evidences from sulphur K edge XANES studies on glasses. J Am Ceram Soc 91:721–727. doi:10.1111/j.1551-2916.2007.02044.x

    Article  CAS  Google Scholar 

  • Benfatto M, Natoli CR, Bianconi A, Garcia J, Marcelli A, Fanfoni M, Davoli I (1986) Multiple-scattering regime and higher-order correlations in X-ray-absorption spectra of liquid solutions. Phys Rev B 34:5774–5781. doi:10.1103/PhysRevB.34.5774

    Article  CAS  Google Scholar 

  • Benfatto M, Della Longa S, Wu Z, Qin Y, Pan G, Morante S (2004) The role of Zn in the interplay among Langmuir–Blodgett multi-layer and myelin basic protein: a quantitative analysis of XANES spectra. Biophys Chem 110:191–201. doi:10.1016/j.bpc.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  • Bianconi A, Congiu-Castellano A, Dell’Ariccia M, Giovannelli A, Morante S, Burattini E, Durham PJ (1986) Local Fe site structure in the tense-to-relaxed transition in carp deoxyhemoglobin: a XANES (X-ray absorption near edge structure) study. Proc Natl Acad Sci USA 83:7736–7740. doi:10.1073/pnas.83.20.7736

    Article  CAS  PubMed  Google Scholar 

  • Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as natural marker. J Comp Neurol 197:63–80. doi:10.1002/cne.901970106

    Article  CAS  PubMed  Google Scholar 

  • Bush WD, Garguilo J, Zucca FA, Albertini A, Zecca L, Edwards GS, Nemanich RJ, Simon JD (2006) The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc Natl Acad Sci USA 103:14785–14789. doi:10.1073/pnas.0604010103

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Moss SC, Eisner M (1994) X-ray characterization of melanins-II. Pigment Cell Res 7:263–273. doi:10.1111/j.1600-0749.1994.tb00061.x

    Article  CAS  PubMed  Google Scholar 

  • Chio S (1977) PhD thesis. University of Houston, Houston

  • Crippa PR, Wang QJ, Eisner M, Moss SC, Zecca L, Zachack P, Gog T (1996) Structure of human neuromelanin by X-ray diffraction: comparison with synthetics. XVI IPCC Abstr. Pigment Cell Res Suppl 5:72

    Google Scholar 

  • D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231:987–989. doi:10.1126/science.3080808

    Article  PubMed  Google Scholar 

  • Ebel H (2004) Quantitative analysis by X-ray induced total electron yield (TEY) compared to XRFA. Powder Diffr 19:90–96. doi:10.1154/1.1649329

    Article  CAS  Google Scholar 

  • Fleet ME (2005) XANES spectroscopy of sulphur in Earth materials. Can Mineral 43:1811–1838. doi:10.2113/gscanmin.43.6.1811

    Article  CAS  Google Scholar 

  • Frank P, Hodgson KO (2000) Defining chemical species in complex environments using K-edge X-ray absorption spectroscopy: vanadium in intact blood cells and Henze solution from the tunicate Ascidia ceratodes. Inorg Chem 39:6018–6027. doi:10.1021/ic000546m

    Article  CAS  PubMed  Google Scholar 

  • George GN, Gorbaty ML (1989) Sulphur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds. J Am Chem Soc 111:3182–3186. doi:10.1021/ja00191a012

    Article  CAS  Google Scholar 

  • Gilbert B, Andres R, Perfetti P, Margaritondo G, Rempfer G, De Stasio G (2000) Charging phenomena in PEEM imaging and spectroscopy. Ultramicroscopy 83:129–139. doi:10.1016/S0304-3991(99)00196-5

    Article  CAS  PubMed  Google Scholar 

  • Graham DG (1979) On the origin and significance of neuromelanin. Arch Pathol Lab Med 103:359–362

    CAS  PubMed  Google Scholar 

  • Heald SM (1988) In: Koningsberger DC, Prins R (eds) X-ray absorption. Principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 87–118

  • Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Koningsberger DC, Prins R (eds) (1988) X-ray absorption. Principles, applications, techniques of EXAFS, SEXAFS and XANES (and references quoted therein). Wiley, New York

  • Lee PA, Pendry JB (1975) Theory of the extended X-ray absorption fine structure. Phys Rev B 11:2795–2811

    Article  CAS  Google Scholar 

  • Lindquist NG, Larsson BS, Lydén-Sokolowski A (1988) Autoradiography of [14C] paraquat or [14C] diquat in frogs and mice: accumulation in neuromelanin. Neurosci Lett 93:1–6

    Article  CAS  PubMed  Google Scholar 

  • Meneghini C, Morante S (1998) The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-ray absorption spectroscopy. Biophys J 75:1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Morante S (2001) The zinc environment in Langmuir–Blodgett phospholipid multi-layers. J Synchrotron Rad 8:975–977

    Article  CAS  Google Scholar 

  • Morante S, González-Iglesias R, Potrich C, Meneghini C, Meyer-Klaucke W, Menestrina G, Gasset M (2004) Inter- and intra-octarepeat Cu(II) site geometries in the prion protein: implication in Cu(II) binding cooperativity and Cu(II)-mediated assemblies. J Biol Chem 279:11753–11759

    Article  CAS  PubMed  Google Scholar 

  • Odh G, Carstam R, Paulson J, Wittbjer A, Rosengren E, Rorsman H (1994) Neuromelanin of the human substantia nigra: a mixed type melanin. J Neurochem 62:2030–2036

    CAS  PubMed  Google Scholar 

  • Östergren A, Annas A, Skog K, Lindquist NG, Brittebo EB (2004) Long-term retention of neurotoxic β-carbolines in brain neuromelanin. J Neural Transm 111:141–157

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Prince RC, Divers T, George GN (1998) Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett 441:11–14

    Article  CAS  PubMed  Google Scholar 

  • Prietzel J, Thieme J, Neuhäusler U, Susini J, Kögel-Knabner I (2003) Speciation of sulphur in soils and soil particles by X-ray spectroscopy. Eur J Soil Science 54:423–433

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12:537–541

    Article  CAS  Google Scholar 

  • Rehr JJ, Albers RC (1990) Scattering-matrix formulation of curved-wave multiple-scattering theory: application to X-ray-absorption fine structure. Phys Rev B 41:8139–8149

    Article  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Akao Y, Osawa T, Tribl F, Gerlach M, Zucca FA, Zecca L, Riederer P, Naoi M (2004) Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm 111:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Stellato F, Menestrina G, Dalla Serra M, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S (2006) Metal binding in amyloids beta peptides shows both intra- and inter-peptide coordination modes. Eur Biophys J 35:340–351

    Article  CAS  PubMed  Google Scholar 

  • Stöhr J, Noguera C, Kendelewicz T (1984) Auger and photoelectron contributions to the electron-yield surface extended X-ray absorption fine-structure signal. Phys Rev B 30:5571–5579

    Article  Google Scholar 

  • Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874

    Article  CAS  PubMed  Google Scholar 

  • Vlachos D, Craven AJ, McComb DW (2005) Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250–915 eV. J Synchrotron Rad 12:224–233

    Article  CAS  Google Scholar 

  • Wakamatsu K, Fujikawa K, Zucca FA, Zecca L, Ito S (2003) The structure of neuromelanin as studied by chemical degradative methods. J Neurochem 86:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502

    CAS  PubMed  Google Scholar 

  • Ye T, Lamb LE, Wakamatsu K, Ito S, Simon JD (2003) Ultrafast absorption and photothermal studies of trichochrome C in solution. Photochem Photobiol Sci 2(7):821–823

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Mecacci C, Seraglia R, Parati E (1992) The chemical characterization of melanin contained in substantia nigra of human brain. Biochim Biophys Acta 1138:6–10

    CAS  PubMed  Google Scholar 

  • Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E (1994) Iron and other metals in neuromelanin, substantia nigra and putamen of human brain. J Neurochem 62:1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T, Swartz HM (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 73:407–415

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Costi P, Mecacci C, Ito S, Terreni M, Sonnino S (2000) Interaction of human substantia nigra neuromelanin with lipids and peptides. J Neurochem 74:1758–1765

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fardello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848

    Article  CAS  PubMed  Google Scholar 

  • Zucca FA, Giaveri G, Gallorini M, Alberini A, Toscani M, Pezzoli G, Lucius R, Wilms H, Sulzer D, Ito S, Wakamatsu K, Zecca L (2004) The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 17:610–617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank G.C. Rossi for many useful discussions and a careful reading of the manuscript. This work was supported by the Brazilian Synchrotron Light Laboratory (LNLS) under proposal DO4B-XAS1-1834. L.Z. was supported by MIUR-FIRB project RBNE03PX83 on “Protein folding and aggregation: metal and biomolecules in protein conformational diseases” and MIUR-PRIN project 2005035582 on “Chemical processes and structural modifications in neurodegeneration.” Partial support from MIUR-Italy under PRIN05 Contract is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Raimondo Crippa.

Additional information

Proceedings of the XIX Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Rome, September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crippa, P.R., Eisner, M., Morante, S. et al. An XAS study of the sulfur environment in human neuromelanin and its synthetic analogs. Eur Biophys J 39, 959–970 (2010). https://doi.org/10.1007/s00249-009-0462-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0462-9

Keywords

Navigation