Skip to main content
Log in

Structural studies on serum albumins under green light irradiation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amati M, Lelj F (2003) Luminescent Compounds fac- and mer-Aluminum Tris (quinolin-8-olate). A pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties. J Phys Chem A107:2560–2569

    Google Scholar 

  • Ashikava T, Motoyama A, Ichikawa H, Itagaki H, Sato Y (2000) Low molecular peptide model of protein denaturation by UVA irradiation and the effect of antioxidants. Altern Anim Test Exp 7(1):30–36

    Google Scholar 

  • Bendkowsky V, Butscher B, Nipper J, Shaffer J, Löw R, Pfau T (2009) Observation of ultralong-range Rydberg molecules. Nature 458:1005–1008

    Article  CAS  PubMed  Google Scholar 

  • Boisseau C, Simbotin I, Côté R (2002) Macrodimers: ultralong range Rydberg molecules. Phys Rev Lett 88:133004–133007

    Article  PubMed  Google Scholar 

  • Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic, London

    Google Scholar 

  • Comorosan S (1970) The biochemical flip-flop. Nature 227:64–65

    Article  CAS  PubMed  Google Scholar 

  • Comorosan S (1974) The measurement problem in biology. Int J Quantum Chem Symp 1:221

    CAS  Google Scholar 

  • Comorosan S (1976) Biological observables. In: Rosen R (ed) Progress theoretical biology. Academic, New York, pp 161–203

    Google Scholar 

  • Comorosan S, Vieru S, Murgoci P (1972) The effect of electromagnetic field on enzymic substrates. Biochim Biophys Acta 268:620–621

    CAS  PubMed  Google Scholar 

  • Comorosan S et al (2009) The green light effects on biological systems: a new biophysical phenomenology. J Biol Phys 35:265–277

    Article  CAS  PubMed  Google Scholar 

  • Dunn MJ (1997) Quantitative two-dimensional gel electrophoresis. Biochem Soc Trans 25:248–254

    CAS  PubMed  Google Scholar 

  • Eisenberg R, Resnick R (1974) Quantum physics, electronic spectra. In: John (ed) Wiley & Sons, New York, pp 467–470

  • Fröhlich H (1970) Long range coherence and the activity of enzymes. Nature 228:228–234

    Google Scholar 

  • Greene CH, Dickinson AS, Sadeghpour HR (2000) Creation of polar and nonpolar ultra-long-range Rydberg molecules. Phys Rev Lett 85:2458–2461

    Article  CAS  PubMed  Google Scholar 

  • Hohenberg P, Khon W (1964) Inomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Kasha M (1999) From Jablonski to femtoseconds. Evolution of molecular photophysics. Acta Phys Pol A 95:15–36

    CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–1138

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B37:785–789

    Google Scholar 

  • Leggett AJ (2002) Testing the limits of quantum mechanics. J Phys Condens Matter 14R:415–451

    Article  Google Scholar 

  • Lejon S, Cramer JF, Nordberg PA (2008) Structural basis for the binding of naproxen to human serum albumin in the presence of fatty acids and the GA module. Acta Crystallogr, Sect F 64:64–69

    Article  Google Scholar 

  • Lu ZX, Cui T, Shi QL (1987) Application of circular dichroism (CD) and optical rotatory dispersion (ORD). Molecular biology. Science, Beijing

    Google Scholar 

  • Penrose R (1998) Quantum computation, entanglement and state reduction. Philosophical transactions of the royal society A: mathematical. Phys Eng Sci 356(1743):1927–1939

    Google Scholar 

  • Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  • Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124(094107):1–15

    Google Scholar 

  • Stan D, Matei I, Mihailescu C, Savin M, Matache M, Hillebrand M, Baciu I (2009) Spectroscopic investigantions of the bidding interaction of a new indanedione derivate with human and bovine serum albumins. Molecules 14:1614–1626

    Article  CAS  PubMed  Google Scholar 

  • Stevens R, Hutton E (1960) Radiative Life-time of the pyrene dimer and the possible role of excited dimers in energy transfer processes. Nature 186:1045–1046

    Article  CAS  Google Scholar 

  • Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (Theochem) 464:211–226

    Article  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2007) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89(5):392–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Comorosan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comorosan, S., Polosan, S., Popescu, I. et al. Structural studies on serum albumins under green light irradiation. Eur Biophys J 39, 1483–1491 (2010). https://doi.org/10.1007/s00249-010-0606-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0606-y

Keywords

Navigation