Skip to main content
Log in

Dye-release assay for investigation of antimicrobial peptide activity in a competitive lipid environment

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A dye-release method for investigating the effect of a competitive lipid environment on the activity of two membrane-disrupting antimicrobial peptides (AMP), maculatin 1.1 and aurein 1.2, is presented. The results support the general conclusion that AMP have greater affinity for negatively charged membranes, for example bacterial membranes, than for the neutral membrane surface found in eukaryotic cells, but only within a competitive lipid environment. Indeed, in a single-model membrane environment, both peptides were more potent against neutral vesicles than against charged vesicles. The approach was also used to investigate the effect of pre-incubating the peptides in a neutral lipid environment then introducing charged lipid vesicles. Maculatin was shown to migrate from the neutral lipid bilayers, where pores had already formed, to the charged membrane bilayers. This result was also observed for charged-to-charged bilayers but, interestingly, not for neutral-to-neutral lipid interfaces. Aurein was able to migrate from either lipid environment, indicating weaker binding to lipid membranes, and a different molecular mechanism for lysis of lipid bilayers. Competitive lipid environments could be used to assess other critical conditions that modulate the activity of membrane peptides or proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Anderson RL, Davis S (1982) An organic phosphorus assay which avoids the use of hazardous perchloric-acid. Clin Chim Acta 121:111–116

    Article  CAS  PubMed  Google Scholar 

  • Arias JL, Clares B, Morales ME, Gallardo V, Ruiz MA (2011) Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets 12:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Chia BC, Carver JA, Mulhern TD, Bowie JH (2000) Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata solution structure and biological activity. Eur J Biochem 267:1894–1908

    Article  CAS  PubMed  Google Scholar 

  • Chia CSB, Gong YJ, Bowie JH, Zuegg J, Cooper MA (2011) Membrane binding and perturbation studies of the antimicrobial peptides caerin, citropin, and maculatin. Biopolymers 96:147–157

    Article  CAS  PubMed  Google Scholar 

  • Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure 19:1543–1548

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta 1768:2500–2509

    Article  CAS  PubMed  Google Scholar 

  • Fernandez DI, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F (2012) The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 14:15739–15751

    Article  CAS  PubMed  Google Scholar 

  • Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller PY, Milton MN (2012) The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11:751–761

    Article  CAS  PubMed  Google Scholar 

  • Pokorny A, Almeida PF (2005) Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry 44:9538–9544

    Article  CAS  PubMed  Google Scholar 

  • Pokorny A, Almeida PF, Melo EC, Vaz WL (2000) Kinetics of amphiphile association with two-phase lipid bilayer vesicles. Biophys J 78:267–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pokorny A, Birkbeck TH, Almeida PF (2002) Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles. Biochemistry 41:11044–11056

    Article  CAS  PubMed  Google Scholar 

  • Rozek T, Waugh RJ, Steinborner ST, Bowie JH, Tyler MJ, Wallace JC (1998) The maculatin peptides from the skin glands of the tree frog Litoria genimaculata: a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. J Pept Sci 4:111–115

    Article  CAS  PubMed  Google Scholar 

  • Rozek T, Wegener KL, Bowie JH, Olver IN, Carver JA, Wallace JC, Tyler MJ (2000) The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur J Biochem 267:5330–5341

    Article  CAS  PubMed  Google Scholar 

  • Sani MA, Loudet C, Grobner G, Dufourc EJ (2007) Pro-apoptotic bax-alpha 1 synthesis and evidence for beta-sheet to alpha-helix conformational change as triggered by negatively charged lipid membranes. J Pept Sci 13:100–106

    Article  CAS  PubMed  Google Scholar 

  • Sani MA, Gehman JD, Separovic F (2011) Lipid matrix plays a role in Abeta fibril kinetics and morphology. FEBS Lett 585:749–754

    Article  CAS  PubMed  Google Scholar 

  • Sani MA, Separovic F, Gehman JD (2012a) The lipid network. Biophys Rev 4:283–290

    Article  CAS  Google Scholar 

  • Sani MA, Whitwell TC, Separovic F (2012b) Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Biochim Biophys Acta 1818:205–211

    Article  CAS  PubMed  Google Scholar 

  • Sani MA, Whitwell TC, Gehman JD, Robins-Browne RM, Pantarat N, Attard TJ, Reynolds EC, O’Brien-Simpson NM, Separovic F (2013) Maculatin 1.1 disrupts staphylococcus aureus lipid membranes via apore mechanism. Antimicrob Agents Chemother 57:3593–3600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  • Shai Y, Hadari YR, Finkels A (1991) pH-dependent pore formation properties of pardaxin analogues. J Biol Chem 266:22346–22354

    CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Smith DK, Moulding K, Chen HM (1998) The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. J Biol Chem 273:27438–27448

    Article  CAS  PubMed  Google Scholar 

  • White DC, Frerman FE (1967) Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol 94:1854–1867

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NHMRC (project APP1008106) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Separovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, MA., Gagne, E., Gehman, J.D. et al. Dye-release assay for investigation of antimicrobial peptide activity in a competitive lipid environment. Eur Biophys J 43, 445–450 (2014). https://doi.org/10.1007/s00249-014-0970-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0970-0

Keywords

Navigation