Skip to main content
Log in

A nanomechanical study of the effects of colistin on the Klebsiella pneumoniae AJ218 capsule

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Atomic force microscopy measurements of capsule thickness revealed that that the wild-type Klebsiella pneumoniae AJ218 capsular polysaccharides were rearranged by exposure to colistin. The increase in capsule thickness measured near minimum inhibitory/bactericidal concentration (MIC/MBC) is consistent with the idea that colistin displaces the divalent cations that cross-bridge adjacent lipopolysaccharide (LPS) molecules through the capsule network. Cryo-electron microscopy demonstrated that the measured capsule thickness at near MIC/MBC of 1.2 μM was inflated by the disrupted outer membrane, through which the capsule is excreted and LPS is bound. Since wild-type and capsule-deficient strains of K. pneumoniae AJ218 have equivalent MICs and MBCs, the presence of the capsule appeared to confer no protection against colistin in AJ218. A spontaneously arising colistin mutant showed a tenfold increase in resistance to colistin; genetic analysis identified a single amino acid substitution (Q95P) in the PmrB sensor kinase in this colistin-resistant K. pneumoniae AJ218. Modification of the lipid A component of the LPS could result in a reduction of the net-negative charge of the outer membrane, which could hinder binding of colistin to the outer membrane and displacement of the divalent cations that bridge adjacent LPS molecules throughout the capsular polysaccharide network. Retention of the cross-linking divalent cations may explain why measurements of capsule thickness did not change significantly in the colistin-resistant strain after colistin exposure. These results contrast with those for other K. pneumoniae strains that suggest that the capsule confers colistin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AMP:

Antimicrobial peptide

CFU:

Colony-forming unit

ESBL:

Extended-spectrum beta-lactamases

LB:

Luria–Bertani

LPS:

Lipopolysaccharide

MBC:

Minimum bactericidal concentration

MIC:

Minimum inhibitory concentration

PEI:

Polyethylene imine

References

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489

    Article  CAS  PubMed  Google Scholar 

  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72(12):7107–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S, Gaibani P, Rossolini GM (2014) In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob Agents Chemother 58(8):4399–4403

    Article  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Choi MJ, Ko KS (2014) Mutant prevention concentrations of colistin for Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae clinical isolates. J Antimicrob Chemother 69(1):275–277

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical and Laboratory Standards Institute, Pennsylvania, pp 14–17

    Google Scholar 

  • Considine RF, Drummond CJ, Dixon DR (2001) Force of interaction between a biocolloid and an inorganic oxide: complexity of surface deformation, roughness, and brushlike behavior. Langmuir 17(20):6325–6335

    Article  CAS  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172(11):6568–6572

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupres V, Menozzi FD, Locht C, Clare BH, Abbott NL, Cuenot S, Dufrêne YF (2005) Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2(7):515–520

    Article  CAS  PubMed  Google Scholar 

  • Dzul SP, Thornton MM, Hohne DN, Stewart EJ, Shah AA, Bortz DM, Younger JG (2011) Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures. Appl Environ Microbiol 77(5):1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7(9):715–718

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis 40(9):1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Formosa C, Herold M, Vidaillac C, Duval RE, Dague E (2015) Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy. J Antimicrob Chemother 70(8):2261–2270

    Article  CAS  PubMed  Google Scholar 

  • Gaboriaud F, Bailet S, Dague E, Jorand F (2005) Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J Bacteriol 187(11):3864–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaboriaud F, Gee ML, Strugnell R, Duval JFL (2008a) Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir 24(19):10988–10995

    Article  CAS  PubMed  Google Scholar 

  • Gaboriaud F, Parcha BS, Gee ML, Holden JA, Strugnell RA (2008b) Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging. Coll Surf B 62(2):206–213

    Article  CAS  Google Scholar 

  • Hertz H (1896) On the contact of elastic solids Miscellaneous Papers by H. Hertz. Macmillan, London

    Google Scholar 

  • Highsmith AK, Jarvis WR (1985) Klebsiella pneumoniae: selected virulence factors that contribute to pathogenicity. Infect Control 6(2):75–77

    Article  CAS  PubMed  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic force microscope tips. Rev Sci Instrum 64(7):1868–1873

    Article  CAS  Google Scholar 

  • Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M, Nordmann P (2014) Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother 58(8):4762–4766

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenney AW, Clements A, Farn JL, Wijburg OL, McGlinchey A, Spelman DW, Strugnell RA (2006) Seroepidemiology of Klebsiella pneumoniae in an Australian tertiary hospital and its implications for vaccine development. J Clin Microbiol 44(1):102–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao FS, Pan YR, Hsu RQ, Chen HM (2012) Efficacy verification and microscopic observations of an anticancer peptide, CB1a, on single lung cancer cell. Biochimica et Biophysica Acta (BBA) Biomembr 1818(12):2927–2935

    Article  CAS  Google Scholar 

  • Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YM, Ricke SC (2000) Efficient amplification of multiple transposon-flanking sequences. J Microbiol Methods 41(3):195–199

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6(9):589–601

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Yu HH, Ng TW, Paterson DL, Velkov T, Li J, Fu J (2014a) Nanoscale focused ion beam tomography of single bacterial cells for assessment of antibiotic effects. Microsc Microanal 20(02):537–547

    Article  CAS  PubMed  Google Scholar 

  • Liu BL, Liu YL, Di XD, Zhang XZ, Wang RW, Bai YB, Wang JW (2014b) Colistin and anti-Gram-positive bacterial agents against Acinetobacter baumannii. Rev Soc Bras Med Trop 47(4):451–456

    Article  PubMed  Google Scholar 

  • Llobet E, Tomas JM, Bengoechea JA (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154(Pt 12):3877–3886

    Article  CAS  PubMed  Google Scholar 

  • Lounatmaa K, Nanninga N (1976) Effect of polymyxin on the outer membrane of Salmonella typhimurium: freeze-fracture studies. J Bacteriol 128(2):665–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lounatmaa K, Mäkelä PH, Sarvas M (1976) Effect of polymyxin on the ultrastructure of the outer membrane of wild-type and polymyxin-resistant strain of Salmonella. J Bacteriol 127(3):1400–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lower SK, Hochella MF, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292(5520):1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Mortensen NP, Fowlkes JD, Sullivan CJ, Allison DP, Larsen NB, Molin S, Doktycz MJ (2009) Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells. Langmuir 25(6):3728–3733

    Article  CAS  PubMed  Google Scholar 

  • Mularski A, Wilksch JJ, Wang H, Hossain MA, Wade JD, Separovic F, Gee ML (2015) Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir 31(22):6164–6171

    Article  CAS  PubMed  Google Scholar 

  • Mularski A, Wilksch JJ, Hanssen E, Strugnell RA, Separovic F (2016) Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochimica et Biophysica Acta (BBA) Biomembr 1858(6):1091–1098

    Article  CAS  Google Scholar 

  • Poirel L, Jayol A, Bontron S, Villegas MV, Ozdamar M, Türkoglu S, Nordmann P (2015) The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J Antimicrob Chemother 70(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Radmacher M (1997) Measuring the elastic properties of biological samples with the AFM. Eng Med Biol Mag IEEE 16(2):47–57

    Article  CAS  Google Scholar 

  • Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69(1):264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schembri MA, Blom J, Krogfelt KA, Klemm P (2005) Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73(8):4626–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw JE, Epand RF, Hsu JCY, Mo GCH, Epand RM, Yip CM (2008) Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. J Struct Biol 162(1):121–138

    Article  CAS  PubMed  Google Scholar 

  • Soon RL, Nation RL, Harper M, Adler B, Boyce JD, Tan CH, Larson I (2011) Effect of colistin exposure and growth phase on the surface properties of live Acinetobacter baumannii cells examined by atomic force microscopy. Int J Antimicrob Agents 38(6):493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss J, Kadilak A, Cronin C, Mello CM, Camesano TA (2010) Binding, inactivation, and adhesion forces between antimicrobial peptide cecropin P1 and pathogenic E. coli. Colloids Surf B 75(1):156–164

    Article  CAS  Google Scholar 

  • Struve C, Krogfelt KA (2003) Role of capsule in Klebsiella pneumoniae virulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiol Lett 218(1):149–154

    Article  CAS  PubMed  Google Scholar 

  • Suo Z, Avci R, Deliorman M, Yang X, Pascual DW (2009) Bacteria survive multiple puncturings of their cell walls. Langmuir 25(8):4588–4594

    Article  CAS  PubMed  Google Scholar 

  • Taubes G (2008) The bacteria fight back. Science 321(5887):356–361

    Article  CAS  PubMed  Google Scholar 

  • Velegol SB, Logan BE (2002) Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18(13):5256–5262

    Article  CAS  Google Scholar 

  • Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8(6):711

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wilksch JJ, Lithgow T, Strugnell RA, Gee ML (2013) Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress. Soft Matter 9(31):7560–7567

    Article  CAS  Google Scholar 

  • Wang H, Wilksch JJ, Strugnell RA, Gee ML (2015) Role of capsular polysaccharides in biofilm formation: an AFM nanomechanics study. ACS Appl Mater Interfaces 7(23):13007–13013

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Dhillon P, Yan H, Farmer S, Hancock REW (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(12):3317–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Australian Research Council and the National Health and Medical Research Council (Program Grant 606788) and Dr. Michelle Gee, who together with JL, initially suggested the AFM study of the effect of colistin on K. pneumoniae. AM received an Australian Postgraduate Award and a David Hay Postgraduate Writing-Up Award. JL is an Australian NHMRC Senior Research Fellow and is supported by a research grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI111965). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. All AFM work was conducted at the Nanomaterials Platform, University of Melbourne. Electron microscopy was carried out at the Bio21 Advanced Microscopy Facility, University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mularski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mularski, A., Wilksch, J., Hanssen, E. et al. A nanomechanical study of the effects of colistin on the Klebsiella pneumoniae AJ218 capsule. Eur Biophys J 46, 351–361 (2017). https://doi.org/10.1007/s00249-016-1178-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1178-2

Keywords

Navigation