Skip to main content
Log in

The self-association and thermal denaturation of caprine and bovine β-lactoglobulin

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Milk components, such as proteins and lipids, have different physicochemical properties depending upon the mammalian species from which they come. Understanding the different responses of these milks to digestion, processing, and differences in their immunogenicity requires detailed knowledge of these physicochemical properties. Here we report on the oligomeric state of β-lactoglobulin from caprine milk, the most abundant protein present in the whey fraction. At pH 2.5 caprine β-lactoglobulin is predominantly monomeric, whereas bovine β-lactoglobulin exists in a monomer–dimer equilibrium at the same protein concentrations. This behaviour was also observed in molecular dynamics simulations and can be rationalised in terms of the amino acid substitutions present between caprine and bovine β-lactoglobulin that result in a greater positive charge on each subunit of caprine β-lactoglobulin at low pH. The denaturation of β-lactoglobulin when milk is heat-treated contributes to the fouling of heat-exchange surfaces, reducing yields and increasing cleaning costs. The bovine and caprine orthologues of β-lactoglobulin display different responses to thermal treatment, with caprine β-lactoglobulin precipitating at higher pH values than bovine β-lactoglobulin (pH 7.1 compared to pH 5.6) that are closer to the natural pH of these milks (pH 6.7). This property of caprine β-lactoglobulin likely contributes to the reduced heat stability of caprine milk compared to bovine milk at its natural pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almaas H, Cases A, Devold TG, Holm H, Langsrud T, Aabakken L, Aadnoey T, Vegarud GE (2006) In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int Dairy J 16:961–968

    Article  CAS  Google Scholar 

  • Anema S, Stanley D (1998) Heat-induced, pH-dependent behaviour of protein in caprine milk. Int Dairy J 8:917–923

    Article  CAS  Google Scholar 

  • Azuara C, Lindahl E, Koehl P, Orland H, Delarue M (2006) PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson–Boltzmann treatment of macromolecule electrostatics. Nucleic Acids Res 34:38–42

    Article  Google Scholar 

  • Ball DW (2006) Field guide to spectroscopy. SPIE Press, Bellingham

    Book  Google Scholar 

  • Ballester M, Sánchez A, Folch J (2005) Polymorphisms in the goat β-lactoglobulin gene. J Dairy Res 72:379–384

    Article  CAS  Google Scholar 

  • Bellioni-Businco B, Paganelli R, Lucenti P (1999) Allergenicity of goat’s milk in children with cow’s milk allergy. J Allergy Clin Immunol 103(6):1191–1194

    Article  CAS  Google Scholar 

  • Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. D. Reidel Publishing Company, Dordrecht, pp 331–342

    Google Scholar 

  • Berendsen H, Postma J, Gunsteren W, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Brookes E, Demeler B (2008) Parallel computational techniques for the analysis of sedimentation velocity experiments in ultrascan. Colloid Polym Sci 286:139–148

    Article  CAS  Google Scholar 

  • Creamer LK, Plowman JE, Liddell MJ, Smith MH, Hill JP (1998) Micelle stability: kappa-casein structure and function. J Dairy Sci 81:3004–3012

    Article  CAS  Google Scholar 

  • Crowther J, Lassé M, Suzuki H, Kessans S, Loo T, Norris G, Hodgkinson A, Jameson G, Dobson R (2014) Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin. FEBS Lett 588:3816–3822

    Article  CAS  Google Scholar 

  • De Jong P (1997) Impact and control of fouling in milk processing. Trends Food Sci Technol 8:401–405

    Article  Google Scholar 

  • Demeler B, Gorbet G (2016) Analytical ultracentrifugation data analysis with UltraScan-III. Ch. 8. In: Uchiyama S, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer, Berlin, pp 119–143

    Chapter  Google Scholar 

  • Demeler B, Holde K (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288

    Article  CAS  Google Scholar 

  • Demeler B, Brookes E, Wang R, Schirf V, Kim C (2010) Characterization of reversible associations by sedimentation velocity with UltraScan. Macromol Biosci 10:775–782

    Article  CAS  Google Scholar 

  • Folch JM, Coll A, Sanchez A (1994) Complete sequence of the caprine beta-lactoglobulin gene. J Dairy Sci 77:3493–3497

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and analysis tools on the ExPASy server. Humana Press Inc., Totawa

    Book  Google Scholar 

  • Gaucheron F (2005) The minerals of milk. Reprod Nutr Dev 45:473–483

    Article  CAS  Google Scholar 

  • Haenlein G (2004) Goat milk in human nutrition. Small Rumin Res 51:155–163

    Article  Google Scholar 

  • Havea P, Singh H, Creamer LK (2001) Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment. J Dairy Res 68:483–497

    Article  CAS  Google Scholar 

  • Henry G, Mollé D, Morgan F, Fauquant J, Bouhallab S (2002) Heat-induced covalent complex between casein micelles and beta-lactoglobulin from goat’s milk: identification of an involved disulfide bond. J Agric Food Chem 50:185–191

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen H (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hong Y, Creamer L (2002) Changed protein structures of bovine β-lactoglobulin B and α-lactalbumin as a consequence of heat treatment. Int Dairy J 12:345–359

    Article  CAS  Google Scholar 

  • Humphrey Q, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • Kapila R, Kavadi P, Kapila S (2013) Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Rumin Res 112:191–198

    Article  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2004) Invited review: β-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87:785–796

    Article  CAS  Google Scholar 

  • Kontopidis G, Gilliver A, Sawyer L (2014) Ovine β-lactoglobulin at atomic resolution. Acta Crystallogr F Struct Biol Commun 70:1498–1503

    Article  CAS  Google Scholar 

  • Kuwata K, Era S, Hoshino M, Forge V, Goto Y, Batt C (1999) Solution structure and dynamics of bovine β-lactoglobulin A. Protein Sci 8:2541–2545

    Article  CAS  Google Scholar 

  • Lara-Villoslada F, Olivares M, Jiménez J, Boza J, Xaus J (2004) Goat milk is less immunogenic than cow milk in a murine model of atopy. J Pediatr Gastroenterol Nutr 39:354–360

    Article  CAS  Google Scholar 

  • Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. Royal Society of Chemistry, Cambridge, pp 90–125

    Google Scholar 

  • Manderson G, Hardman M, Creamer L (1998) Effect of heat treatment on the conformation and aggregation of β-lactoglobulin A, B, and C. J Agric Food Chem 46:5052–5061

    Article  CAS  Google Scholar 

  • Manderson G, Creamer L, Hardman M (1999) Effect of heat treatment on the circular dichroism spectra of bovine beta-lactoglobulin A, B, and C. J Agric Food Chem 47:4557–4567

    Article  CAS  Google Scholar 

  • Mercadante D, Melton L, Norris G, Loo T, Williams M, Dobson R, Jameson G (2011) Bovine β-lactoglobulin is dimeric under imitative physiological conditions: dissociation equilibrium and rate constants over the pH range of 2.5–7.5. Biophys J 103:303–312

    Article  Google Scholar 

  • Montilla A, Calvo M (1997) Goat’s milk stability during heat treatment: effect of pH and phosphates. J Agric Food Chem 45:931–934

    Article  CAS  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:320–324

    Article  Google Scholar 

  • Roefs S, Kruif K (1994) A model for the denaturation and aggregation of β-lactoglobulin. Eur J Biochem 226:883–889

    Article  CAS  Google Scholar 

  • Sakurai K, Oobatake M, Goto Y (2001) Salt-dependent monomer–dimer equilibrium of bovine β-lactoglobulin at pH 3. Protein Sci 10:2325–2335

    Article  CAS  Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    Article  CAS  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  • Sievers F, Higgins DG (2014) Clustal omega, accurate alignment of very large numbers of sequences. Humana Press, Totowa, NJ, pp 105–116

    Google Scholar 

  • Smolenski G, Haines S, Kwan F, Bond J, Farr V, Davis S, Stelwagen K, Wheeler T (2007) Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 6:207–215

    Article  CAS  Google Scholar 

  • Uhrínová S, Smith MH, Jameson GB, Uhrín D, Sawyer L, Barlow PN (2000) Structural changes accompanying pH-induced dissociation of the beta-lactoglobulin dimer. Biochemistry 39:3565–3574

    Article  Google Scholar 

  • Wang C, Zhu Y, Wang J (2015) Comparative study on the heat stability of goat milk and cow milk. Indian J Anim Res 50:610–613

    Google Scholar 

  • Zadow JG, Hardham JF, Kocak HR, Mayes JJ (1983) The stability of goat’s milk to UHT processing. Aust J Dairy Technol 1:20–23

    Google Scholar 

Download references

Acknowledgements

R.C.J.D. and J.M.C. acknowledge the following for funding support, in part: (1) the New Zealand Ministry of Business, Innovation and Employment Research Grant (C10X1203), (2) the New Zealand Royal Society Marsden Fund (15-UOC032), (3) the Biomolecular Interaction Centre, University of Canterbury, and (4) The Riddet Institute. J.R.A. is supported by a Rutherford Discovery Fellowship (15-MAU-001) and a Marsden Grant (15-UOA-105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renwick C. J. Dobson.

Additional information

Special Issue: 23rd International AUC Workshop and Symposium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowther, J.M., Allison, J.R., Smolenski, G.A. et al. The self-association and thermal denaturation of caprine and bovine β-lactoglobulin. Eur Biophys J 47, 739–750 (2018). https://doi.org/10.1007/s00249-018-1300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1300-8

Keywords

Navigation