Skip to main content
Log in

Measuring translational diffusion of 15N-enriched biomolecules in complex solutions with a simplified 1H-15N HMQC-filtered BEST sequence

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Pulsed-field gradient nuclear magnetic resonance has seen an increase in applications spanning a broad range of disciplines where molecular translational diffusion properties are of interest. The current study introduces and experimentally evaluates the measurement of translational diffusion coefficients of 15N-enriched biomolecules using a 1H-15N HMQC-filtered band-selective excitation short transient (BEST) sequence as an alternative to the previously described SOFAST-XSTE sequence. The results demonstrate that accurate translational diffusion coefficients of 15N-labelled peptides and proteins can be obtained using this alternative 1H-15N HMQC-filtered BEST sequence which is implementable on NMR spectrometers equipped with probes fitted with a single-axis field gradient, including most cryoprobes dedicated to bio-NMR. The sequence is of potential use for direct quantification of protein or peptide translational diffusion within complex systems, such as in mixtures of macromolecules, crowded solutions, membrane-mimicking media and in bicontinuous cubic phases, where conventional sequences may not be readily applicable due to the presence of intense signals arising from sources other than the protein or peptide under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali FE, Separovic F, Barrow CJ, Yao S, Barnham KJ (2006) Copper and zinc mediated oligomerisation of A beta peptides. Int J Pept Res Ther 12:153–164

    Article  CAS  Google Scholar 

  • Altieri AS, Hinton DP, Byrd RA (1995) Association of biomolecular systems via pulsed-field gradient NMR self-diffusion measurements. J Am Chem Soc 117:7566–7567

    Article  CAS  Google Scholar 

  • Andersson A, Almqvist J, Hagn F, Maler L (2004) Diffusion and dynamics of penetratin in different membrane mimicking media. BBA Biomembranes 1661:18–25

    Article  CAS  Google Scholar 

  • Andrec M, Prestegard JH (1997) Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements. J Biomol NMR 9:136–150

    Article  CAS  Google Scholar 

  • Augustyniak R, Ferrage F, Paquin R, Lequin O, Bodenhausen G (2011) Methods to determine slow diffusion coefficients of biomolecules. Applications to engrailed 2, a partially disordered protein. J Biomol NMR 50:209–218

    Article  CAS  Google Scholar 

  • Barchi JJ, Grasberger B, Gronenborn AM, Clore GM (1994) Investigation of the backbone dynamics of the Igg-binding domain of streptococcal protein-G by heteronuclear 2-dimensional H-1–N-15 nuclear-magnetic-resonance spectroscopy. Protein Sci 3:15–21

    Article  CAS  Google Scholar 

  • Barhoum S, Palit S, Yethiraj A (2016) Diffusion NMR studies of macromolecular complex formation, crowding and confinement in soft materials. Prog Nucl Mag Res Sp 94–95:1–10

    Article  Google Scholar 

  • Bocian W, Sitkowski J, Tarnowska A, Bednarek E, Kawecki R, Kozminski W, Kozerski L (2008) Direct insight into insulin aggregation by 2D NMR complemented by PFGSE NMR. Proteins 71:1057–1065

    Article  CAS  Google Scholar 

  • Brand T, Cabrita EJ, Morris GA, Gunther R, Hofmann HJ, Berger S (2007) Residue-specific NH exchange rates studied by NMR diffusion experiments. J Magn Reson 187:97–104

    Article  CAS  Google Scholar 

  • Buevich AV, Baum J (2002) Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding. J Am Chem Soc 124:7156–7162

    Article  CAS  Google Scholar 

  • Callaghan PT, Legros MA, Pinder DN (1983) The measurement of diffusion using deuterium pulse field gradient nuclear magnetic resonance. J Chem Phys 79:6372–6381

    Article  CAS  Google Scholar 

  • Chou JJ, Baber JL, Bax A (2004) Characterization of phospholipid mixed micelles by translational diffusion. J Biomol NMR 29:299–308

    Article  CAS  Google Scholar 

  • Dehner A, Kessler H (2005) Diffusion NMR spectroscopy: folding and aggregation of domains in p53. ChemBioChem 6:1550–1565

    Article  CAS  Google Scholar 

  • Didenko T, Boelens R, Rudiger SGD (2011) 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Eng Des Sel 24:99–103

    Article  CAS  Google Scholar 

  • Dingley AJ, Mackay JP, Chapman BE, Morris MB, Kuchel PW, Hambly BD, King GF (1995) Measuring protein self-association using pulsed-field-gradient NMR spectroscopy: application to myosin light chain 2. J Biomol NMR 6:321–328

    Article  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Bio 6:197–208

    Article  CAS  Google Scholar 

  • Eriksson PO, Lindblom G (1993) Lipid and water diffusion in bicontinuous cubic phases measured by NMR. Biophys J 64:129–136

    Article  CAS  Google Scholar 

  • Gossert AD, Jahnke W (2016) NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Mag Res Sp 97:82–125

    Article  CAS  Google Scholar 

  • Horst R, Horwich AL, Wuthrich K (2011) Translational diffusion of macromolecular assemblies measured using transverse-relaxation-optimized pulsed field gradient NMR. J Am Chem Soc 133:16354–16357

    Article  CAS  Google Scholar 

  • Jansma AL, Kirkpatrick JP, Hsu AR, Handel TM, Nietlispach D (2010) NMR analysis of the structure, dynamics, and unique oligomerization properties of the chemokine CCL27. J Biol Chem 285:14424–14437

    Article  CAS  Google Scholar 

  • Larkin TJ, Garvey CJ, Shishmarev D, Kuchel PW, Momot KI (2017) Na+ and solute diffusion in aqueous channels of Myverol bicontinuous cubic phase: pGSE NMR and computer modelling. Magn Reson Chem 55:464–471

    Article  CAS  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169

    Article  CAS  Google Scholar 

  • Li CG, Wang YQ, Pielak GJ (2009) Translational and rotational diffusion of a small globular protein under crowded conditions. J Phys Chem B 113:13390–13392

    Article  CAS  Google Scholar 

  • McLachlan GD, Cahill SM, Girvin ME, Almo SC (2007) Acid-induced equilibrium folding intermediate of human platelet profilin. Biochemistry 46:6931–6943

    Article  CAS  Google Scholar 

  • Meikle TG, Yao S, Zabara A, Conn CE, Drummond CJ, Separovic F (2017) Predicting the release profile of small molecules from within the ordered nanostructured lipidic bicontinuous cubic phase using translational diffusion coefficients determined by PFG-NMR. Nanoscale 9:2471–2478

    Article  CAS  Google Scholar 

  • Melnikova DL, Skirda VD, Nesmelova IV (2017) Effect of intrinsic disorder and self-association on the translational diffusion of proteins: the case of alpha-casein. J Phys Chem B 121:2980–2988

    Article  CAS  Google Scholar 

  • Nesmelova IV, Idiyatullin D, Mayo KH (2004) Measuring protein self-diffusion in protein-protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering. J Magn Reson 166:129–133

    Article  CAS  Google Scholar 

  • Price WS (2009) NMR studies of translational motion: principles and applications. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Rajagopalan S, Chow C, Raghunathan V, Fry CG, Cavagnero S (2004) NMR spectroscopic filtration of polypeptides and proteins in complex mixtures. J Biomol NMR 29:505–516

    Article  CAS  Google Scholar 

  • Roosen-Runge F, Hennig M, Zhang FJ, Jacobs RMJ, Sztucki M, Schober H, Seydel T, Schreiber F (2011) Protein self-diffusion in crowded solutions. P Natl Acad Sci USA 108:11815–11820

    Article  CAS  Google Scholar 

  • Rothe M, Gruber T, Groger S, Balbach J, Saalwachter K, Roos M (2016) Transient binding accounts for apparent violation of the generalized Stokes-Einstein relation in crowded protein solutions. Phys Chem Chem Phys 18:18006–18014

    Article  CAS  Google Scholar 

  • Schanda P (2009) Fast-pulsing longitudinal relaxation optimized techniques: enriching the toolbox of fast biomolecular NMR spectroscopy. Prog Nucl Mag Res Sp 55:238–265

    Article  CAS  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  CAS  Google Scholar 

  • Sethi A, Bruell S, Patil N, Hossain MA, Scott DJ, Petrie EJ, Bathgate RAD, Gooley PR (2016) The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1. Nat Commun 7:11344

    Article  CAS  Google Scholar 

  • Shukla M, Dorai K (2011) Resolving overlaps in diffusion encoded spectra using band-selective pulses in a 3D BEST-DOSY experiment. J Magn Reson 213:69–75

    Article  CAS  Google Scholar 

  • Sillerud LO, Larson RS (2012) Advances in nuclear magnetic resonance for drug discovery. Methods Mol Biol 910:195–266

    Article  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin Diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Susac L, Horst R, Wuthrich K (2014) Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. ChemBioChem 15:995–1000

    Article  CAS  Google Scholar 

  • Tanner JE (1970) Use of stimulated echo in NMR-diffusion studies. J Chem Phys 52:2523–2526

    Article  CAS  Google Scholar 

  • Wahlstrom A, Cukalevski R, Danielsson J, Jarvet J, Onagi H, Rebek J, Linse S, Graslund A (2012) Specific binding of a beta-cyclodextrin dimer to the amyloid beta peptide modulates the peptide aggregation process. Biochemistry 51:4280–4289

    Article  Google Scholar 

  • Wang YQ, Li CG, Pielak GJ (2010) Effects of proteins on protein diffusion. J Am Chem Soc 132:9392–9397

    Article  CAS  Google Scholar 

  • Wang YQ, Benton LA, Singh V, Pielak GJ (2012) Disordered protein diffusion under crowded conditions. J Phys Chem Lett 3:2703–2706

    Article  CAS  Google Scholar 

  • Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378:1104–1115

    Article  CAS  Google Scholar 

  • Yan JL, Kline AD, Mo HP, Zartler ER, Shapiro MJ (2002) Epitope mapping of ligand-receptor interactions by diffusion NMR. J Am Chem Soc 124:9984–9985

    Article  CAS  Google Scholar 

  • Yao S, Howlett GJ, Norton RS (2000) Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements. J Biomol NMR 16:109–119

    Article  CAS  Google Scholar 

  • Yao S, Cherny RA, Bush AI, Masters CL, Barnham KJ (2004) Characterizing bathocuproine self-association and subsequent binding to Alzheimer’s disease amyloid beta-peptide by NMR. J Pept Sci 10:210–217

    Article  CAS  Google Scholar 

  • Yao S, Babon JJ, Norton RS (2008) Protein effective rotational correlation times from translational self-diffusion coefficients measured by PFG-NMR. Biophys Chem 136:145–151

    Article  CAS  Google Scholar 

  • Yao S, Weber DK, Separovic F, Keizer DW (2014) Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. Eur Biophys J 43:331–339

    Article  CAS  Google Scholar 

  • Yao S, Lee EF, Pettikiriarachchi A, Evangelista M, Keizer DW, Fairlie WD (2016) Characterisation of the conformational preference and dynamics of the intrinsically disordered N-terminal region of Beclin 1 by NMR spectroscopy. BBA Proteins Proteom 1864:1128–1137

    Article  CAS  Google Scholar 

  • Zabara A, Meikle TG, Trenker R, Yao S, Newman J, Peat TS, Separovic F, Conn CE, Call MJ, Call ME, Landau EM, Drummond CJ (2017) Lipidic cubic phase-induced membrane protein crystallization: interplay between lipid molecular structure, mesophase structure and properties, and crystallogenesis. Cryst Growth Des 17:5667–5674

    Article  CAS  Google Scholar 

  • Zhang XC, Perugini MA, Yao S, Adda CG, Murphy VJ, Low A, Anders RF, Norton RS (2008) Solution conformation, backbone dynamics and lipid interactions of the intrinsically unstructured malaria surface protein MSP2. J Mol Biol 379:105–121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Aitor Moreno of Bruker for the source code of the 1H-15N HSQC-edited PFG-NMR sequence (Fig. S3, Supplemental Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenggen Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 587 kb)

Supplementary material 2 (DOCX 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Meikle, T.G., Sethi, A. et al. Measuring translational diffusion of 15N-enriched biomolecules in complex solutions with a simplified 1H-15N HMQC-filtered BEST sequence. Eur Biophys J 47, 891–902 (2018). https://doi.org/10.1007/s00249-018-1311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1311-5

Keywords

Navigation