Skip to main content

Advertisement

Log in

Geographical distribution and disease associations of the CD45 exon 6 138G variant

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

CD45 is crucial for normal lymphocyte signalling, and altered CD45 expression has major effects on immune function. Both mice and humans lacking CD45 expression are severely immunodeficient, and single-nucleotide polymorphisms in the CD45 gene that cause altered splicing have been associated with autoimmune and infectious diseases. Recently, we identified an exon 6 A138G polymorphism resulting in an increased proportion of activated CD45RO T cells and altered immune function. Here we report a significantly reduced frequency of the 138G allele in hepatitis C Japanese patients and a possibly reduced frequency in type I diabetes. The allele is widely distributed in the Far East and India, indicating that it may have a significant effect on disease burden in a large part of the human population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bartlett S, Straub J, Tonks S, Wells RS, Bodmer JG, Bodmer WF (2001) Alkaline-mediated differential interaction (AMDI): a simple automatable single-nucleotide polymorphism assay. Proc Natl Acad Sci U S A 98:2694–2697

    Article  PubMed  Google Scholar 

  • Boxall S, Stanton T, Hirai K, Ward V, Yasui T, Tahara H, Tamori A, Nishiguchi S, Shiomi S, Ishiko O, Inaba M, Nishizawa Y, Dawes R, Bodmer W, Beverley PC, Tchilian EZ (2004) Disease associations and altered immune function in CD45 138G variant carriers. Hum Mol Genet 13:2377–2384

    Article  PubMed  Google Scholar 

  • Byth KF, Conroy LA, Howlett S, Smith AJ, May J, Alexander DR, Holmes N (1996) CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J Exp Med 183:1707–1718

    Article  PubMed  Google Scholar 

  • Cao XT, Ngo TN, Wills B, Kneen R, Nguyen TT, Ta TT, Tran TT, Doan TK, Solomon T, Simpson JA, White NJ, Farrar JJ (2002) Evaluation of the World Health Organization standard tourniquet test and a modified tourniquet test in the diagnosis of dengue infection in Vietnam. Trop Med Int Health 7:125–132

    Article  PubMed  Google Scholar 

  • Delgado JC, Quinones-Berrocal J, Thim S, Miranda LF, Goldfeld AE (2004) Diagnostic and clinical implications of response to tuberculin in two ethnically distinct populations from Peru and Cambodia. Int J Tuberc Lung Dis 8:982–987

    PubMed  Google Scholar 

  • Do HT, Baars W, Schwinzer R (2005) Functional significance of the 77C→G polymorphism in the human CD45 gene: enhanced T-cell reactivity by variantly expressed CD45RA isoforms. Transplant Proc 37:51–52

    Article  PubMed  Google Scholar 

  • Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137

    Article  PubMed  Google Scholar 

  • Irie-Sasaki J, Sasaki T, Penninger JM (2003) CD45 Regulated signaling pathways. Curr Top Med Chem 3:783–796

    Article  PubMed  Google Scholar 

  • Jacobsen M, Schweer D, Ziegler A, Gaber R, Schock S, Schwinzer R, Wonigeit K, Lindert RB, Kantarci O, Schaefer-Klein J, Schipper HI, Oertel WH, Heidenreich F, Weinshenker BG, Sommer N, Hemmer B (2000) A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet 26:495–499

    Article  PubMed  Google Scholar 

  • Jeffery KJ, Siddiqui AA, Bunce M, Lloyd AL, Vine AM, Witkover AD, Izumo S, Usuku K, Welsh KI, Osame M, Bangham CR (2000) The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J Immunol 165:7278–7284

    PubMed  Google Scholar 

  • Jurinke C, van den Boom D, Cantor CR, Koster H (2002) The use of MassARRAY technology for high throughput genotyping. Adv Biochem Eng Biotechnol 77:57–74

    PubMed  Google Scholar 

  • Kishihara K, Penninger J, Wallace VA, Kundig TM, Kawai K, Wakeham A, Timms E, Pfeffer K, Ohashi PS, Thomas ML et al (1993) Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74:143–156

    Article  PubMed  Google Scholar 

  • Kung C, Pingel JT, Heikinheimo M, Klemola T, Varkila K, Yoo LI, Vuopala K, Poyhonen M, Uhari M, Rogers M, Speck SH, Chatila T, Thomas ML (2000) Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med 6:343–345

    Article  PubMed  Google Scholar 

  • Loke H, Bethell DB, Phuong CX, Dung M, Schneider J, White NJ, Day NP, Farrar J, Hill AV (2001) Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis 184:1369–1373. Epub 2001 Nov 13

    Article  PubMed  Google Scholar 

  • Peisong G, Mao XQ, Enomoto T, Feng Z, Gloria-Bottini F, Bottini E, Shirakawa T, Sun D, Hopkin JM (2004) An asthma-associated genetic variant of STAT6 predicts low burden of ascaris worm infestation. Genes Immun 5:58–62

    Article  PubMed  Google Scholar 

  • Phuong CX, Nhan NT, Kneen R, Thuy PT, van Thien C, Nga NT, Thuy TT, Solomon T, Stepniewska K, Wills B (2004) Clinical diagnosis and assessment of severity of confirmed dengue infections in Vietnamese children: is the world health organization classification system helpful? Am J Trop Med Hyg 70:172–179

    PubMed  Google Scholar 

  • Rioux JD, Abbas AK (2005) Paths to understanding the genetic basis of autoimmune disease. Nature 435:584–589

    Article  PubMed  Google Scholar 

  • Roy S, Frodsham A, Saha B, Hazra SK, Mascie-Taylor CG, Hill AV (1999) Association of vitamin D receptor genotype with leprosy type. J Infect Dis 179:187–191

    Article  PubMed  Google Scholar 

  • Schwinzer R, Witte T, Hundrieser J, Ehlers S, Momot T, Hunzelmann N, Krieg T, Schmidt RE, Wonigeit K (2003) Enhanced frequency of a PTPRC (CD45) exon A mutation (77C→G) in systemic sclerosis. Genes Immun 4:168–169

    Article  PubMed  Google Scholar 

  • Shirakawa T, Enomoto T, Shimazu S, Hopkin JM (1997) The inverse association between tuberculin responses and atopic disorder. Science 275:77–79

    Article  PubMed  Google Scholar 

  • Stanton T, Boxall S, Hirai K, Dawes R, Tonks S, Yasui T, Kanaoka Y, Yuldasheva N, Ishiko O, Bodmer W, Beverley PC, Tchilian EZ (2003) A high-frequency polymorphism in exon 6 of the CD45 tyrosine phosphatase gene (PTPRC) resulting in altered isoform expression. Proc Natl Acad Sci U S A 100:5997–6002

    Article  PubMed  Google Scholar 

  • Subra JF, Cautain B, Xystrakis E, Mas M, Lagrange D, van der Heijden H, van de Gaar MJ, Druet P, Fournie GJ, Saoudi A, Damoiseaux J (2001) The balance between CD45RChigh and CD45RClow CD4 T cells in rats is intrinsic to bone marrow-derived cells and is genetically controlled. J Immunol 166:2944–2952

    PubMed  Google Scholar 

  • Tchilian EZ, Wallace DL, Dawes R, Imami N, Burton C, Gotch F, Beverley PC (2001a) A point mutation in CD45 may be associated with HIV-1 infection. AIDS 15:1892–1894

    Article  PubMed  Google Scholar 

  • Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G, Beverley PC (2001b) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166:1308–1313

    PubMed  Google Scholar 

  • Thude H, Hundrieser J, Wonigeit K, Schwinzer R (1995) A point mutation in the human CD45 gene associated with defective splicing of exon A. Eur J Immunol 25:2101–2106

    PubMed  Google Scholar 

  • Tran TH, Day NP, Nguyen HP, Nguyen TH, Pham PL, Dinh XS, Ly VC, Ha V, Waller D, Peto TE, White NJ (1996) A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med 335:76–83

    Article  PubMed  Google Scholar 

  • Vogel A, Strassburg CP, Manns MP (2003) 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: evidence for a genetic link. Genes Immun 4:79–81

    Article  PubMed  Google Scholar 

  • Vyshkina T, Leist TP, Shugart YY, Kalman B (2004) CD45 (PTPRC) as a candidate gene in multiple sclerosis. Mult Scler 10:614–617

    Article  PubMed  Google Scholar 

  • Zilch CF, Walker AM, Timon M, Goff LK, Wallace DL, Beverley PC (1998) A point mutation within CD45 exon A is the cause of variant CD45RA splicing in humans. Eur J Immunol 28:22–29

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted for the provision of samples to J. Farrar, N. Day, D. Bethell, S. Loke (Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam), R.M. Pitchappan (Madurai Kamaraj University, Madurai, India), T. Shirakawa (Kyoto University Medical School, Japan) and D. Sun (The Institute of Parasitic Disease, Shanghai, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elma Z. Tchilian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, V., Hennig, B.J., Hirai, K. et al. Geographical distribution and disease associations of the CD45 exon 6 138G variant. Immunogenetics 58, 235–239 (2006). https://doi.org/10.1007/s00251-006-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0099-0

Keywords

Navigation