Skip to main content
Log in

MHC class II β exon 2 variation in pardalotes (Pardalotidae) is shaped by selection, recombination and gene conversion

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The high levels of polymorphism and allelic diversity which characterise genes in the major histocompatibility complex (MHC) are thought to be generated and maintained through the combined effects of different evolutionary processes. Here, we characterised exon 2 of the MHC class II β genes in two congeneric passerine species, the spotted (Pardalotus punctatus) and striated pardalote (Pardalotus striatus). We estimated the levels of allelic diversity and tested for signatures of recombination, gene conversion and balancing selection to determine if these processes have influenced MHC variation in the two species. Both species showed high levels of polymorphism and allelic diversity, as well as evidence of multiple gene loci and putative pseudogenes based on the presence of stop codons. We found higher levels of MHC diversity in the striated pardalote than the spotted pardalote, based on the levels of individual heterozygosity, sequence divergence and number of polymorphic sites. The observed differences may reflect variable selection pressure on the species, resulting from differences in patterns of movement among populations. We identified strong signatures of historical balancing selection, recombination and gene conversion at the sequence level, indicating that MHC variation in the two species has been shaped by a combination of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S et al (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci U S A 101:3490–3494. doi:10.1073/pnas.0306582101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol 65:541–554. doi:10.1007/s00239-007-9033-9

    Article  CAS  PubMed  Google Scholar 

  • Amos JN, Bennett AF, Mac Nally R et al (2012) Predicting landscape-genetic consequences of habitat loss, fragmentation and mobility for multiple species of woodland birds. PLoS One 7:e30888. doi:10.1371/journal.pone.0030888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babik W, Taberlet P, Ejsmond MJA, Radwan J (2009) New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Resour 9:713–719

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam S, Bray RD, Mulder RA et al (2016) New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines. BMC Evol Biol 16:1–11. doi:10.1186/s12862-016-0681-5

    Article  Google Scholar 

  • Barker FK, Barrowclough GF, Groth JG (2002) A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc R Soc B Biol Sci 269:295–308. doi:10.1098/rspb.2001.1883

    Article  CAS  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common Yellowthroat (Geothlypis trichas). J Hered 101:448–460. doi:10.1093/jhered/esq018

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud C, Pérez-Tris J, Federici P et al (2006) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60:383–389

    Article  CAS  PubMed  Google Scholar 

  • Bos DH, Waldman B (2006) Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis. Mol Biol Evol 23:137–143. doi:10.1093/molbev/msj016

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Jardetzky T, Gorga J et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Burri R, Hirzel HN, Salamin N et al (2008) Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution. Mol Biol Evol 25:1180–1191. doi:10.1093/molbev/msn065

    Article  CAS  PubMed  Google Scholar 

  • Canal D, Alcaide M, Anmarkrud JA, Potti J (2010) Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca. BMC Res Notes 3:236. doi:10.1186/1756-0500-3-236

    Article  PubMed  PubMed Central  Google Scholar 

  • Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. doi:10.1093/bioinformatics/btq429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond A, Ashton B, Buxton S et al (2011) Geneious

    Google Scholar 

  • Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250

    Article  CAS  PubMed  Google Scholar 

  • Ford HA (2011) The causes of decline of birds of eucalypt woodlands: advances in our knowledge over the last 10 years. EMU 111:1. doi:10.1071/MU09115

    Article  Google Scholar 

  • Ford H, Bell H (1981) Density of birds in Eucalypt woodland affected to varying degrees by dieback. EMU 81:202. doi:10.1071/MU9810202

    Article  Google Scholar 

  • Ford HA, Walters JR, Cooper CB et al (2009) Extinction debt or habitat change?—ongoing losses of woodland birds in north-eastern New South Wales, Australia. Biol Conserv 142:3182–3190. doi:10.1016/j.biocon.2009.08.022

    Article  Google Scholar 

  • Frankham R (1995) Inbreeding and extinction: a threshold effect. Conserv Biol 9:792–799

    Article  Google Scholar 

  • Freeman-Gallant CR, Johnson EM, Saponara F, Stanger M (2002) Variation at the major histocompatibility complex in Savannah sparrows. Mol Ecol 11:1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Galan M, Guivier E, Caraux G et al (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 11:296. doi:10.1186/1471-2164-11-296

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner JL, Trueman JWH, Ebert D et al (2010) Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Mol Phylogenet Evol 55:1087–1102. doi:10.1016/j.ympev.2010.02.005

    Article  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evol Int J Org Evol 57:1707–1722

    Article  CAS  Google Scholar 

  • Gaudieri S, Dawkins RL, Habara K et al (2000) SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome Res 10:1579–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrisson K, Pavlova A, Amos JN et al (2012) Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landsc Ecol 27:813–827

    Article  Google Scholar 

  • Hedrick PW (1999) Balancing selection and MHC. Genetica 104:207–214

    Article  CAS  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423

    Article  Google Scholar 

  • Higgins PJ, Peter JM (eds) (2002) Vol. 6: Pardalotes to Shrike-thrushes. In: Handbook of Australian, New Zealand and Antarctic birds. Oxford University Press, Sydney

  • Huchard E, Albrecht C, Schliehe-Diecks S et al (2012) Large-scale MHC class II genotyping of a wild lemur population by next generation sequencing. Immunogenetics 64:895–913. doi:10.1007/s00251-012-0649-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435. doi:10.1146/annurev.genet.32.1.415

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi:10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J, Bontrop R, Dawkins R et al (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219. doi:10.1007/BF00204890

    CAS  PubMed  Google Scholar 

  • Klein J, Sato A, Nagl S, O’hUigín C (1998) Molecular trans-species polymorphism. Annu Rev Ecol Syst 29:1–C1

    Article  Google Scholar 

  • Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304. doi:10.1146/annurev.genet.41.110306.130137

    Article  CAS  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB et al (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi:10.1093/molbev/msl051

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • MacNally R, Bennett A, Thomson J et al (2009) Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation. Divers Distrib 15:720–730

    Article  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243. doi:10.1111/j.1365-294X.2005.02557.x

    Article  CAS  PubMed  Google Scholar 

  • Miller HC, Lambert DM (2004) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–191. doi:10.1007/s00251-004-0666-1

    CAS  PubMed  Google Scholar 

  • Miller MM, Taylor RL (2016) Brief review of the chicken major histocompatibility complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 95:375–392. doi:10.3382/ps/pev379

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno CE, Halffter G (2000) Assessing the completeness of bat biodiversity inventories using species accumulation curves. J Appl Ecol 37:149–158. doi:10.1046/j.1365-2664.2000.00483.x

    Article  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

  • Nyári ÁS, Joseph L (2012) Evolution in Australasian mangrove forests: multilocus phylogenetic analysis of the Gerygone warblers (Aves: Acanthizidae). PLoS One 7:e31840. doi:10.1371/journal.pone.0031840

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohta T (1995) Gene conversion vs point mutation in generating variability at the antigen recognition site of major histocompatibility complex loci. J Mol Evol 41:115–119

    CAS  PubMed  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21. doi:10.1038/sj.hdy.6800724

    CAS  PubMed  Google Scholar 

  • Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. doi:10.1093/bioinformatics/bti079

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808. doi:10.1080/10635150490522304

    Article  PubMed  Google Scholar 

  • Promerová M, Albrecht T, Bryja J (2009) Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 61:451–461. doi:10.1007/s00251-009-0375-x

    Article  PubMed  Google Scholar 

  • Promerová M, Babik W, Bryja J et al (2012) Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine-CE-SSCP and 454 pyrosequencing. Mol Ecol Resour 12:285–292. doi:10.1111/j.1755-0998.2011.03082.x

    Article  PubMed  Google Scholar 

  • Reusch T, Langefors A (2005) Inter- and intralocus recombination drive MHC class IIB gene diversification in a teleost, the three-spined stickleback Gasterosteus aculeatus. J Mol Evol 61:531–541. doi:10.1007/s00239-004-0340-0

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Rogers A, Rogers D (1986) Bander’s aid : a guide to ageing and sexing bush birds. A. Rogers, St. Andrews

    Google Scholar 

  • Sawyer SA (1999) GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St. Louis, available at http://www.math.wustl.edu/~sawyer

  • Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    Google Scholar 

  • Spurgin L, Richardson D (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B 277:979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurgin LG, van Oosterhout C, Illera JC et al (2011) Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 20:5213–5225. doi:10.1111/j.1365-294X.2011.05367.x

    Article  CAS  PubMed  Google Scholar 

  • Stuglik MT, Radwan J, Babik W (2011) jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol Ecol Resour 11:739–742. doi:10.1111/j.1755-0998.2011.02997.x

    Article  CAS  PubMed  Google Scholar 

  • Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annu Rev Ecol Evol Syst 36:445–466

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  • Watson J, Watson A, Paull D, Freudenberger D (2003) Woodland fragmentation is causing the decline of species and functional groups of birds in southeastern Australia. Pac Conserv Biol 8:261–270

    Article  Google Scholar 

  • Westerdahl H, Hansson B, Bensch S, Hasselquist D (2004) Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J Evol Biol 17:485–492. doi:10.1111/j.1420-9101.2004.00711.x

    Article  CAS  PubMed  Google Scholar 

  • Westerdahl H, Waldenstrom J, Hansson B et al (2005) Associations between malaria and MHC genes in a migratory songbird. Proc R Soc B 272:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woinarski J (1973) A comparison of the ground-nesting of two species of pardalote. EMU 74:219–222

    Article  Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yeager M, Hughes AL (1999) Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev 167:45–58

    Article  CAS  PubMed  Google Scholar 

  • Yuhki N, O’Brien S (1990) DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. Proc Natl Acad Sci U S A 87:836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagalska-Neubauer M, Babik W, Stuglik M et al (2010) 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol Biol 10:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol 50:56–68

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479. doi:10.1093/molbev/msi237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the members of the Birds Linkage team, especially A. Lill and N. Takeuchi, and numerous volunteers for assistance with fieldwork, as well as K. Harrisson for helpful comments on the manuscript. Samples were collected under permits from the Victorian Department of Environment and Primary Industries (numbers 10004294 under the Wildlife Act 1975 and the National Parks Act 1975, and NWF10455 under section 52 of the Forest Act 1958), the Australian Bird and Bat Banding Schemes and under approval and monitoring of Monash University ethics processes (BSCI/2007/07). This work was supported by the Australian Research Council (LP0776322), Department of Environment and Primary Industries, Museum Victoria, Parks Victoria, the North Central and Goulburn Broken Catchment Management Authorities, University of Melbourne (SB) and the Australian Academy of Sciences (JM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shandiya Balasubramaniam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of supporting data

The sequence data supporting the results of this article are available in the Figshare digital repository and can be accessed at https://dx.doi.org/10.4225/49/57D0F3611D00A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramaniam, S., Mulder, R.A., Sunnucks, P. et al. MHC class II β exon 2 variation in pardalotes (Pardalotidae) is shaped by selection, recombination and gene conversion. Immunogenetics 69, 101–111 (2017). https://doi.org/10.1007/s00251-016-0953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0953-7

Keywords

Navigation