Skip to main content
Log in

Biotransformation of limonene by bacteria, fungi, yeasts, and plants

  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The past 5 years have seen significant progress in the field of limonene biotransformation, especially with regard to the regiospecificity of microbial biocatalysts. Whereas earlier only regiospecific biocatalysts for the 1,2 position (limonene-1,2-diol) and the 8-position (α-terpineol) were available, recent reports describe microbial biocatalysts specifically hydroxylating the 3-position (isopiperitenol), 6-position (carveol and carvone), and 7-position (perillyl alcohol, perillylaaldehyde, and perillic acid). The present review also includes the considerable progress made in the characterization of plant P-450 limonene hydroxylases and the cloning of the encoding genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Abraham WR, Hoffmann HMR, Kieslich K, Reng G, Stumpf B (1986a) Microbial transformations of some monoterpenoids and sesquiterpenoids. In: Enzymes in organic chemistry. Ciba Foundation Symposium III. Pitman, London, pp 146-160

  • Abraham WR, Stumpf B, Kieslich K (1986b) Microbial transformations of terpenoids with 1-p-menthene skeleton. Appl Microbiol Biotechnol 24:24-30

    CAS  Google Scholar 

  • Bouwmeester HJ, Gershenzon J, Konings MCJM, Croteau R (1998) Biosynthesis of limonene and carvone in fruits of caraway (Carum carvi l.). I. Developmental changes in the activities of three monoterpenoid biosynthetic enzymes. Plant Physiol 117:901-912

    Article  CAS  PubMed  Google Scholar 

  • Bowen ER (1975) Potential by-products from microbial transformation of d-limonene. Florida State Horticultural Society, Florida, p 304

  • Braddock RJ, Cadwallader KR (1995) Bioconversion of citrus d-limonene. Fruit Flavors 596:142-148

    CAS  Google Scholar 

  • Cadwallader KR, Braddock RJ, Parish ME, Higgins DP (1989) Bioconversion of d-limonene by Pseudomonas gladioli. J Food Sci 54:1241-1245

    CAS  Google Scholar 

  • Chang HC, Oriel P (1994) Bioproduction of perillyl alcohol and related monoterpenes by isolates of Bacillus stearothermophilus. J Food Sci 59:660-662

    CAS  Google Scholar 

  • Chang HC, Gage DA, Oriel PJ (1995) Cloning and expression of a limonene degradation pathway from Bacillus stearothermophilus in Escherichia coli. J Food Sci 60:551-553

    CAS  Google Scholar 

  • Chapman and Hall (2002) Dictionary of natural products on CD-ROM, version 11:1

    Google Scholar 

  • Chatterjee T, Bhattacharyya DK (2001) Biotransformation of limonene by Pseudomonas putida. Appl Microbiol Biotechnol 55:541-546

    Article  CAS  PubMed  Google Scholar 

  • Cheong TK, Oriel PJ (2000) Cloning and expression of the limonene hydroxylase of Bacillus stearothermophilus BR388 and utilization in two-phase limonene conversions. Appl Biochem Biotechnol 84:903-915

    Google Scholar 

  • Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775–778

    Google Scholar 

  • De Kraker JW, Schurink M, Franssen MCR, De Groot AE, Bouwmeester HJ (2003) Hydroxylation of sesquiterpenes by enzymes from chicory (Cichorium intybus L.) roots. Tetrahedron 59:409–418

    Google Scholar 

  • Demyttenaere JCR, Van Belleghem K, De Kimpe N (2001) Biotransformation of (R)-(+)- and (S)-(−)-limonene by fungi and the use of solid phase microextraction for screening. Phytochemistry 57:199–208

    Article  CAS  PubMed  Google Scholar 

  • Dhavalikar RS, Bhattacharyya PK (1966) Microbiological transformations of terpenes. VIII. Fermentation of limonene in a soil pseudomonad. Indian J Biochem 3:144-157

    CAS  PubMed  Google Scholar 

  • Dhavalikar RS, Rangachari PN, Bhattacharyya PK (1966) Microbiological transformations of terpenes. IX. Pathways of degradation of limonene in a soil pseudomonad. Indian J Biochem 3:158–164

    CAS  PubMed  Google Scholar 

  • Draczynska LB (1987) Oxidation of selected p-menthane derivatives by means of Armilariella mellea (honey fungus), a parasite of woodlands. J Basic Microbiol 27:191–196

    Google Scholar 

  • Duetz WA, Jourdat C, Witholt B (2000) Process for the preparation of trans-carveol and/or carvone, EP1205556

  • Duetz WA, Fjallman AHM, Ren SY, Jourdat C, Witholt B (2001a) Biotransformation of d-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl Environ Microbiol 67:2829–2832

    Article  CAS  PubMed  Google Scholar 

  • Duetz WA, Jourdat C, Witholt B (2001b) Process for the preparation of perillyl alcohol. EP1236802

  • Duetz WA, Van Beilen JB, Witholt B (2001c) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Google Scholar 

  • Gabrielyan KA, Menyailova II, Nakhapetyan LA (1992) Biocatalytic transformation of limonene. Biokhimiya y Mykrobiologiya 28:325–330

    CAS  Google Scholar 

  • Haudenschild C, Schalk M, Karp F, Croteau R (2000) Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae. Arch Biochem Biophys 379:127–136

    Article  CAS  PubMed  Google Scholar 

  • Jensen HP, Sharpless KB (1975) Selenium dioxide oxidation of d-limonene—reinvestigation. J Org Chem 40:264–265

    CAS  Google Scholar 

  • Kak SN (1992) Role of biotechnology in the development of perfumery flavoring and cosmetic chemicals. Parfume Kosmet 73:474–475

    CAS  Google Scholar 

  • Karp F, Mihaliak CA, Harris JL, Croteau R (1990) Monoterpene biosynthesis: specificity of the hydroxylations of (−)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata) and perilla (Perilla frutescens) leaves. Arch Biochem Biophys 276:219–226

    CAS  PubMed  Google Scholar 

  • Kieslich K, Abraham WR, Stumpf B, Thede B, Washausen P (1986) Transformation of terpenoids. Progress in essential oil research. de Gruyter, Berlin, pp 367–394

  • Kraidman G, Mukherjee BB, Hill ID (1969) Conversion of d-limonene into an optically active isomer of α-terpineol by a Cladosporium species. Bacteriol Proc p 63

  • Lupien S, Karp F, Wildung M, Croteau R (1999) Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (−)-4s-limonene-3-hydroxylase and (−)-4s-limonene-6-hydroxylase. Arch Biochem Biophys 368:181–192

    Article  CAS  PubMed  Google Scholar 

  • Mars AE, Gorissen JPL, Van den Beld I, Eggink G (2001) Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor. Appl Microbiol Biotechnol 56:101–107

    Article  CAS  PubMed  Google Scholar 

  • Mazzaro D (2000) Orange oil, d-limonene market unsettled due to Brazilian delays. Chem Marketing Rep 258:18

    Google Scholar 

  • Mehtra G (1990) Enantioselective terpene synthesis based on R-(+)-limonene. Pure Appl Chem 62:1263–1268

    Google Scholar 

  • Mikami Y (1988) Microbial conversion of terpenoids. Biotechnol Gen Engin Rev 6:271–320

    CAS  Google Scholar 

  • Mukherjee BB, Kraidman G, Hill ID (1973) Synthesis of glycols by microbial transformations of some monocyclic terpenes. Appl Microbiol 25:447–453

    CAS  PubMed  Google Scholar 

  • Murdock DI, Allen WE (1960) Germicidal effect of orange peel oil and d-limonene in water and orange juice.1. Fungicidal properties against yeast. Food Technol 14:441–445

    CAS  Google Scholar 

  • Noma Y, Yamasaki S, Asakawa Y (1992) Biotransformation of limonene and related compounds by Aspergillus cellulosae. Phytochemistry 31:2725–2727

    Article  CAS  Google Scholar 

  • Onken J, Berger RG (1999) Effects of R-(+)-limonene on submerged cultures of the terpene transforming basidiomycete Pleurotus sapidus. J Biotechnol 69:163–168

    Article  CAS  PubMed  Google Scholar 

  • Rama Devi J, Bhattacharyya PK (1977) Microbiological transformations of terpenes. XXIII. Fermentation of geraniol, nerol and limonene by a soil pseudomonad, Pseudomonas incognita (linalool strain). Indian J Biochem Biophys 14:288–291

    PubMed  Google Scholar 

  • Ravindranath B (1983) Some useful products from limonene—a by-product of the citrus industry. J Scient Industr Res 42:82–86

    CAS  Google Scholar 

  • Royals EE, Horne SE (1951) Conversion of d-limonene to l-carvone. J Am Chem Soc 73:5856–5857

    Google Scholar 

  • Royals EE, Horne SE (1955) Observations on the rate of autoxidation of d-limonene. J Am Chem Soc 77:187–188

    CAS  Google Scholar 

  • Sakuda Y (1969) Oxidation of limonene with selenium dioxide. Bull Chem Soc Japan 42:3348

    CAS  Google Scholar 

  • Schalk M, Croteau R (2000) A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (−)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc Nat Acad Sci U S A 97:11948–11953

    Article  CAS  Google Scholar 

  • Schuler MA (1996) Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 15:235-284

    CAS  Google Scholar 

  • Seigler D (1998) Plant secondary metabolism. Kluwer, Dordrecht, The Netherlands, p 759

  • Speelmans G, Bijlsma A, Eggink G (1998) Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain. Appl Microbiol Biotechnol 50:538–544

    Article  CAS  Google Scholar 

  • Tan Q, Day DF (1998a) Organic co-solvent effects on the bioconversion of (R)-(+)- limonene to (R)-(+)-alpha-terpineol. Process Biochem 33:755–761

    Article  CAS  Google Scholar 

  • Tan Q, Day DF (1998b) Bioconversion of limonene to alpha-terpineol by immobilized Penicillium digitatum. Appl Micriobiol Biotechnol 49:96–101

    Article  CAS  Google Scholar 

  • Tan Q, Day DF, Cadwallader KR (1998) Bioconversion of (R)-(+)-limonene by P. digitatum (NRRL 1202). Process Biochem 33:29–37

    Article  CAS  Google Scholar 

  • Trudgill PW (1990) Microbial metabolism of monoterpenes—recent developments. Biodegradation 1:93–105

    CAS  PubMed  Google Scholar 

  • Van der Werf MJ, De Bont JAM (1998) Screening for microorganisms converting limonene into carvone. In: Kieslich K, van der Beek CP, de Bont JAM, van den Tweel WJJ (eds) New frontiers in screening for microbial biocatalysts. Elsevier, pp 231–234

  • Van der Werf MJ, Bont JAM de, Leak DJ (1997) Opportunities in microbial transformation of monoterpenes. Adv Biochem Eng Biotechnol 55:147–177

    Google Scholar 

  • Van der Werf MJ, Swarts HJ, De Bont JAM (1999) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Micobiol 65:2092–2102

    Google Scholar 

  • Van der Werf MJ, Keijzer PM, Van der Schaft PH (2000) Xanthobacter sp C20 contains a novel bioconversion pathway for limonene. J Biotechnol 84:133–143

    Article  Google Scholar 

  • Van Dyk MS, Van Rensburg E, Moleki N (1998) Hydroxylation of (+) limonene, (−) α-pinene and (−) β-pinene by a Hormonema sp. Biotechnol Lett 20:431–436

    Article  Google Scholar 

  • Vanek T, Valterova I, Vankova R, Vaisar T (1999) Biotransformation of (−)-limonene using Solanum aviculare and Dioscorea deltoidea immobilized plant cells. Biotechnol Lett 21:625–628

    Article  CAS  Google Scholar 

  • Van Rensburg E, Moleleki N, VanderWalt JP, Botes PJ, VanDyk MS (1997) Biotransformation of (+)limonene and (−)piperitone by yeasts and yeast-like fungi. Biotechnol Lett 19:779–782

    Article  Google Scholar 

  • Vonburg R (1995) Limonene. J Appl Toxicol 15:495–499

    CAS  PubMed  Google Scholar 

  • Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane (ed) Comprehensive natural products chemistry: isoprenoids. Elsevier, Oxford, pp 9715

    Google Scholar 

  • Wüst M, Croteau RB (2002) Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylases reveals the mechanism of multiple product formation. Biochemistry 41:1820–1827

    Article  PubMed  Google Scholar 

  • Wüst M, Little DB, Schalk M, Croteau RB (2001) Hydroxylation of limonene enantiomers and analogs by recombinant (−)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites. Arch Biochem Biophys 387:125–136

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Duetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duetz, W.A., Bouwmeester, H., van Beilen, J.B. et al. Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61, 269–277 (2003). https://doi.org/10.1007/s00253-003-1221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1221-y

Keywords

Navigation