Skip to main content
Log in

Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Crude cell extracts of Pseudomonas putida F6 transformed 4-substituted fluoro-, chloro-, bromo- and iodo-phenol without the exogenous addition of cofactors. The rate of substrate consumption decreased with increasing substituent size (F>Cl>Br>I). Biotransformations resulted in greater than 95% utilisation of the halogenated substrate. Product accumulation was observed in incubations with 4-chloro, 4-bromo- and 4-iodo-phenol. These products were identified as the corresponding 4-substituted catechols. Transformation of 4-fluorophenol did not result in the accumulation of the corresponding catechol; however, manipulation of the reaction conditions by incorporation of ascorbic acid culminated in the formation of 4-fluorocatechol. Cell extracts of P. putida F6 also showed activity towards a 3-substituted phenol, namely 3-fluorophenol, resulting in the formation of a single product, 4-fluorocatechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c
Fig. 2
Fig. 3 a
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boersma MG, Dinarieva TY, Middelhoven WJ, VanBerkel WJH., Doran J, Vervoort J, Rietjens IMCM (1998) 19F Nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Appl Environ Microbiol 64:1256–1263

    CAS  PubMed  Google Scholar 

  • Cabanes J, Garcia-Canovas F, Garcia-Carmona, F. (1994) Chemical and enzymatic oxidation of 4-methylcatechol in the presence and absence of l-serine. Spectrophotometric determination of intermediates. Biochim Biophys Acta 917:190–197

    Google Scholar 

  • Davis FA, Srirajan V, Titus DD (1999) Efficient asymmetric synthesis of β-fluoro α-amino acids. J Org Chem 64:6931–6934

    Article  CAS  PubMed  Google Scholar 

  • Espin JC, Wichers HJ (1999) Kinetics of activation of latent mushroom (Agaricus bisporus) tyrosinase by benzyl alcohol. J Agric Food Chem 47:3503–3508

    Article  CAS  PubMed  Google Scholar 

  • Espin JC, Morales M, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F (1997a) Improvement of a continuous spectrophotometric method for determining the monophenolase and diphenolase activities for mushroom polyphenol oxidase. J Agric Food Chem 45:1084–1090

    Article  CAS  Google Scholar 

  • Espin JC, Trujano MF, Tudela J, Garcia-Canovas F (1997b) Monophenolase activity of polyphenol oxidase from Haas avocado. J Agric Food Chem 45:1091–1096

    Article  CAS  Google Scholar 

  • Espin JC, Soler-Rivas C, Cantos E, Tomas-Barberan FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein ZI, Baskunov BP, Boersma MG, Vervoort J, Golovlev EL, Van Berkel W J, Golovleva LA, Rietjens IMCM (2000) Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenol in Rhodococcus opacus 1cp. Appl Environ Microbiol 66:2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Golan-Goldhirsh A, Whitaker JR (1984) Effect of ascorbic acid, sodium bisulphite, and thiol compounds on mushroom polyphenol oxidase. J Agric Food Chem 32:1003–1009

    CAS  Google Scholar 

  • Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Article  Google Scholar 

  • Haggblom MM, Valo RJ (1995) Biodegradation of chlorophenol wastes. In: Young LY, Cerniglia CT (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss New York, pp 389-434

  • Held M, Suske W, Schmid A, Engesser K-H, Kohler H-PE, Wubbolts MG (1998) Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP-1. J Mol Catal B: Enzymatic. 5:87–93

    Google Scholar 

  • Kirk KL, Creveling CR (1984) The chemistry and biology of ring-fluorinated biogenic amines. Med Res Rev 4:189–220

    CAS  PubMed  Google Scholar 

  • Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Suguira J, Sakaino M, Kita Y (1990) Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem 265:15224–15233

    CAS  PubMed  Google Scholar 

  • Kong KH, Hong MP, Choi S, Kim KYT, Cho SH (2000) Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnol Appl Biochem 31:113–118

    CAS  PubMed  Google Scholar 

  • Lowry OH, Roseburgh N, Farr AL, Randall R (1951) Protein measurement with the phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marr J, Kremer S, Sterner O, Anke H (1996) Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation 7:165–171

    CAS  PubMed  Google Scholar 

  • Monserrate E, Haggblom MM (1997) Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl Environ Microbiol 63:3911–3915

    CAS  PubMed  Google Scholar 

  • O’ Connor KE, Duetz W, Wind B, Dobson ADW (1996) The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3. Appl Environ Microbiol 62:3594–3599

    PubMed  Google Scholar 

  • O’ Connor KE, Witholt B, Duetz W (2001) p-Hydroxyphenylacetic acid metabolism in Pseudomonas putida F6. J Bacteriol 183:928–933

    CAS  PubMed  Google Scholar 

  • Peelen S, Rietjens IMCM, Boersma MG, Vervoort J (1995) Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum. A comparison of regioselectivity and rate of conversion with calculated molecular orbital characteristics. Eur J Biochem 227:284–291

    CAS  PubMed  Google Scholar 

  • Pialis P, Saville BA (1998) Production of L-DOPA from tyrosinase immobilized on nylon 6,6: enzyme stability and scaleup. Enzyme Microb Technol 22:261–268

    Article  CAS  Google Scholar 

  • Reinscheid UM, Bauer MP, Mueller R (1997) Biotransformation of halophenols by a thermophillic Bacillus sp. Biodegradation 7:455–461

    Google Scholar 

  • Ridder L, Brigianti F, Boersma MG, Boeren S, Vis EH, Scozzafava A, Veeger, C Rietjens IMCM (1998) Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechol by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Eur J Biochem 257:92–100

    Article  CAS  PubMed  Google Scholar 

  • Rodriquez-Lopez JN, Escribano J, Garcia-Canovas F (1994) A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3- methyl-2-benzothiazolinone hydrazone. Anal Biochem 216:205–212

    Article  PubMed  Google Scholar 

  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11

    CAS  PubMed  Google Scholar 

  • Vogel HJ, Bonner DM. (1956) Acetylornithase of E. coli: Partial purification and some properties. J Biol Chem 218:97–106

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Zhi Li and Dongliang Chang (Institute of Biotechnology, ETH, Zurich, Switzerland) for carrying out LC-MS analysis, and Dr. Mike Casey and Kevin Conway (Department of Chemistry, University College Dublin, Dublin, Ireland) for carrying out GC-MS analysis. This work was supported by grants from the Enterprise Ireland Research Scholarship Programme (BR/1999/043), the Irish Environmental Protection Agency Contributory Scholarship Programme (2001-CS-(17/26) and the Wellcome Trust (055637/Z/98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. O’ Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, S.J., Doyle, E.M., Hewage, C. et al. Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Appl Microbiol Biotechnol 64, 486–492 (2004). https://doi.org/10.1007/s00253-003-1488-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1488-z

Keywords

Navigation