Skip to main content
Log in

Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE)

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fuel oxygenates, mainly methyl tert-butyl ether (MTBE) but also ethyl tert-butyl ether (ETBE), are added to gasoline in replacement of lead tetraethyl to enhance its octane index. Their addition also improves the combustion efficiency and therefore decreases the emission of pollutants (CO and hydrocarbons). On the other hand, MTBE, being highly soluble in water and recalcitrant to biodegradation, is a major pollutant of water in aquifers contaminated by MTBE-supplemented gasoline during accidental release. MTBE was shown to be degraded through cometabolic oxidation or to be used as a carbon and energy source by a few microorganisms. We have summarized the present state of knowledge about the microorganisms involved in MTBE degradation and the MTBE catabolic pathways. The role of the different enzymes is discussed as well as the rare and recent data concerning the genes encoding the enzymes involved in the MTBE pathway. The phylogeny of the microorganisms isolated for their capacity to grow on MTBE is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aramaki H, Sagara Y, Hosoi M, Horiuchi T (1993) Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. J Bacteriol 175:7828–7833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baptist JN, Gholson RK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta 69:40–47

    CAS  PubMed  Google Scholar 

  • Béguin P, Chauvaux S, Miras I, François A, Fayolle F, Monot F (2003) Genes involved in the degradation of ether fuels by bacteria of the MycobacteriumRhodococcus complex. Oil Gas Sci Technol 58:489–497

    Google Scholar 

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Béguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcusruber. J Bacteriol 183:6551–6557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Janssen DB, Witholt B (1996) Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. J Bacteriol 178:5508–5512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deeb RA, Nishino S, Spain J, Hu H-Y, Scow K, Alvarez-Cohen L (2000) MTBE and benzene biodegradation by a bacterial isolate via two independent monooxygenase-initiated pathways. Preprints of extended abstracts, ACS national meeting. AM Chem Soc Div Environ Chem 40: 280–282

    CAS  Google Scholar 

  • Deeb RA, Hu HY, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol 35:312–317

    CAS  PubMed  Google Scholar 

  • Eggink G, van Lelyveld PH, Arnberg A, Arfman N, Witteveen C, Witholt B (1987) Structure of the Pseudomonas putida alkBAC. Identification of transcription and translation products. J Biol Chem 262:6400–6406

    CAS  PubMed  Google Scholar 

  • Eggink G, Engel H, Meijer WG, Otten J, Kingma J, Witholt B (1988) Alkane utilization in Pseudomonas oleovorans: structure and function of the regulatory locus alkR. J Biol Chem 263:13400–13405

    CAS  PubMed  Google Scholar 

  • Fayolle F, Monot F (2005) Biodegradation of fuel ethers. In: Magot M, Ollivier B (eds) Petroleum microbiology. ASM, Washington, DC, USA, pp 301–316

    Google Scholar 

  • Fayolle F, François A, Garnier L, Godefroy D, Mathis H, Piveteau P, Monot F (2003) Limitations in MTBE biodegradation. Oil Gas Sci Technol 58:497–504

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Fortin N, Morales M, Nakagawa Y, Focht DD, Deshusses MA (2001) Methyl tert-butyl ether (MTBE) degradation by a microbial consortia. Environ Microbiol 3:407–416

    CAS  PubMed  Google Scholar 

  • François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacteriumaustroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

    PubMed  PubMed Central  Google Scholar 

  • François A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62:256–262

    PubMed  Google Scholar 

  • Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K (1995) Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 44:479–483

    CAS  PubMed  Google Scholar 

  • Goodfellow M, Jones LJ, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27:61–65

    CAS  PubMed  Google Scholar 

  • Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzinger PB, Mc Clay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Perez G, Fayolle F, Vandecasteele JP (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordoniaterrae. Appl Microbiol Biotechnol 55:117–121

    CAS  PubMed  Google Scholar 

  • Hristova K, Gebreyesus B, Mackay D, Scow KM (2003) Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. Appl Environ Microbiol 69:2616–2623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman M, O’Reilly K (1999) Physiological and enzymatic features of MTBE-degrading bacteria. In: Alleman BC, Leeson A (eds) In situ bioremediation of petroleum hydrocarbons and other organic compounds. Battelle, Columbus, Ohio, pp 7–12

    Google Scholar 

  • Hyman M, Glover K, House A, Johnson E, Smith C (2004) Physiological and enzymatic diversity of aerobic MTBE biodegradation processes. In: Barcelo D, Petrovic M (eds) Proceedings of the second European conference on MTBE. C.S.I.C., Barcelona, Spain, pp 39–43

    Google Scholar 

  • Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Pankow J, Bender D, Price C, Zogorsky J (2000) MTBE. To what extent will past releases contaminate community water supply wells? Environ Sci Technol 34:210A–217A

    CAS  PubMed  Google Scholar 

  • Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tert-butyl ether (MTBE)-oxidizing activity in Mycobacteriumvaccae JOB5. Appl Environ Microbiol 70:1023–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Speitel GE, Georgiou G (2001) Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67:2197–2201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes Ferreira N, Labbé D, Monot F, Fayolle-Guichard F, Greer CW (2006a) Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012. Microbiology 152:1361–1374

    Google Scholar 

  • Lopes Ferreira N, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006b) Isolation of a new Mycobacterium austroafricanum, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365

    PubMed  Google Scholar 

  • Nagy I, Scoofs G, Compernolle F, Proost P, Vanderleyden J, De Mot R (1995) Degradation of the thiocarbamate herbicide EPTC S-ethyldipropylcarbamothioate) and biosafing by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu CH, Hrsitova K, Hanada S, Meng X-Y, Hanson J, Scow KM, Kagamata Y (2006) Methylibium petroleiphilum PM1T gen. nov., sp. nov., a new methyl tert-butyl ether (MTBE) degrading methylotroph of the beta-Proteobacteria. Int J Syst Evol Microbiol (DOI 10.1099/ijs.0.63524-0)

  • Ooyama J, Foster JW (1965) Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie van Leeuwenhoek 31:45–65

    CAS  PubMed  Google Scholar 

  • Park SW, Hwang EH, Park H, Kim JA, Heo J, Lee KH, Song T, Kim E, Ro YT, Kim SW, Kim YM (2003) Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol 185:142–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piveteau P, Fayolle F, Vandecasteele JP, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373

    CAS  PubMed  Google Scholar 

  • Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 30:16122–16130

    Google Scholar 

  • Pruden A, Suidan M (2004) Effect of benzene, toluene, ethylbenzene and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol by pure culture UC1. Biodegradation 15:213–227

    CAS  PubMed  Google Scholar 

  • Rohwerder T, Cenini V, Held C, Martienssen M, Lechner U, Müller RH (2004) Novel MTBE-degrading bacterial isolate from Leuna groundwater (Germany): characterization of the degradation pathway with focus on HIBA oxidase. In: Barcelo D, Petrovic M (eds) Proceedings of the second European conference on MTBE. C.S.I.C., Barcelona, Spain, pp 47–50

    Google Scholar 

  • Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tertiary butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol. DOI 10.1128/AEM.00080-06

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salanitro JP (1995) Understanding the limitations of microbial metabolism of ethers used as fuel octane enhancers. Curr Opin Biotechnol 6:337–340

    CAS  Google Scholar 

  • Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by propane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003a) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacteriumvaccae JOB5. Appl Environ Microbiol 69:796–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003b) Cometabolism of methyl tert-butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8n-alkanes. Appl Environ Microbiol 69:7385–7394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffan RJ, Vainberg S, Condee CW, McClay K, Hatzinger PB (2000) Biotreatment of MTBE with a new bacterial isolate. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle, Columbus, Ohio, pp 165–173

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Unger BP, Gunsalus IC, Sligar SG (1986) Nucleotide sequence of the Pseudomonas putida P-450cam gene and its expression in Escherichia coli. J Biol Chem 261:1158–1163

    CAS  PubMed  Google Scholar 

  • Urios A, Fayolle F, Monot F, Chauvaux S, Béguin P (2002) Physiological comparison of an ETBE (MTBE)-degrading strain and some derived mutants. In: Gavaskar AR, Chen ASC (eds) Remediation of chlorinated and recalcitrant compounds—2002. ISBN 1-57477-132-9. Battelle, Columbus, Ohio. http://www.battelle.org/bookstore

  • Van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    PubMed  Google Scholar 

  • Van Beilen JB, Smits THM, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylase. J Bacteriol 187:85–91

    PubMed  PubMed Central  Google Scholar 

  • Wilson JT (2003) Fate and transport of MTBE and other gasoline components. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Amherst Scientific, Amherst, MA, USA, pp 19–61

    Google Scholar 

Download references

Acknowledgements

Nicolas Lopes Ferreira and Cédric Malandain were supported by a Convention Industrielle de Formation par la Recherche (C.I.F.R.E.) fellowship provided by both the Institut Français du Pétrole (I.F.P.) and the Association Nationale de la Recherche Technique (A.N.R.T.). We thank Charles W. Greer for numerous helpful suggestions and discussions. We thank Diane Labbé (BRI, Montréal) for her help in building the phylogenetic tree. We thank Robert Steffan, Paul Hatzinger, and Simon Vainberg (Shaw Group) for communicating the 16S rDNA sequences of strains ENV735, ENV736, and ENV472. We thank Thore Rohwerder for the early communication of his manuscript in press. We are really grateful to Pierre Béguin (Pasteur Institute) and Frédéric Monot (IFP) for their comments and corrections on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Fayolle-Guichard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes Ferreira, N., Malandain, C. & Fayolle-Guichard, F. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72, 252–262 (2006). https://doi.org/10.1007/s00253-006-0494-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0494-3

Keywords

Navigation