Skip to main content
Log in

Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Manganese peroxidase (MnP) production in the white-rot basidiomycete Physisporinus rivulosus T241i was studied. Separate MnP isoforms were produced in carbon-limited liquid media supplemented with Mn2+, veratryl alcohol, or sawdust. The isoforms had different pH ranges for the oxidation of Mn2+ and 2,6-dimethoxyphenol. Although lignin degradation by white-rot fungi is often triggered by nitrogen depletion, MnPs of P. rivulosus were efficiently produced also in the presence of high-nutrient nitrogen, especially in cultures supplemented with veratryl alcohol. Two MnP encoding genes, mnpA and mnpB, were identified, and their corresponding cDNAs were characterized. Structurally, the genes showed marked dissimilarity, and the expression of the two genes implicated quantitative variation and differential regulation in response to manganese, veratryl alcohol, or sawdust. The variability in regulation and properties of the isoforms may widen the operating range for efficient lignin degradation by P. rivulosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aa:

amino acid

cDNA:

complementary DNA

gDNA:

genomic DNA

HC:

high-nutrient carbon

HN:

high-nutrient nitrogen

LC:

low-nutrient carbon

LiP:

lignin peroxidase (EC 1.11.1.14)

LN:

low-nutrient nitrogen

MnP:

manganese peroxidase (EC 1.11.1.13)

RACE:

rapid amplification of cDNA ends

RT:

reverse transcription

References

  • Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao W, Fukushima Y, Jensen J, Kenneth A, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opinion Biotechnol 10:252–258

    Article  CAS  Google Scholar 

  • Brown J, Li D, Alic M, Gold M (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol 59:4295–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen R, Hadar Y, Yarden O (2001) Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol 3:312–322

    Article  CAS  PubMed  Google Scholar 

  • Collins PJ, O’Brien MM, Dobson ADW (1999) Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from Trametes versicolor. Appl Environ Microbiol 65:1343–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Dekker, New York, pp 559–586

    Google Scholar 

  • Ha H-C, Honda Y, Watanabe T, Kuwahara M (2001) Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl Microbiol Biotechnol 55:704–711

    Article  CAS  PubMed  Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood-rotting polypores and corticoid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme Microb Technol 34:255–263

    Article  CAS  Google Scholar 

  • Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A (2005) Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb Technol 36:461–468

    Article  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers. Lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hatakka A, Maijala P, Hakala TK, Hauhio L, Ellmén J (2003) Novel white-rot fungus and use thereof in wood pretreatment. Finnish Patent FI112248

  • Hildén K, Martínez AT, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419

    Article  PubMed  Google Scholar 

  • Jimenez-Tobon GA, Penninckx MJ, Lejeune R (1997) The relationship between pellet size and production of Mn(II) peroxidase by Phanerochaete chrysosporium in submerged culture. Enzyme Microb Technol 21:537–542

    Article  CAS  Google Scholar 

  • Johansson T, Nyman PO, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol 68:2077–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005) Mn2+ is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun 327:871–876

    Article  CAS  PubMed  Google Scholar 

  • Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Yeo S, Kum J, Song H-G, Choi HT (2005) Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol 43:569–571

    CAS  PubMed  Google Scholar 

  • Li D, Alic M, Brown J, Gold M (1995) Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol 61:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Li N, Ma B, Mayfield MB, Gold MH (1999) Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens. Biochim Biophys Acta 1434:356–364

    Article  CAS  PubMed  Google Scholar 

  • Lobos S, Larrondo L, Salas L, Karahanian E, Vicuña R (1998) Cloning and molecular analysis of a cDNA and the Cs-mnp1 gene encoding a manganese peroxidase isoenzyme from the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Gene 206:185–193

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Mayfield MB, Godfrey BJ, Gold MH (2004) Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. Eukaryot Cell 3:579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maijala P, Harrington TC, Raudaskoski M (2003) A peroxidase gene family and gene trees in Heterobasidion and related genera. Mycologia 95:209–221

    Article  CAS  PubMed  Google Scholar 

  • Manubens A, Avila M, Canessa P, Vicuña R (2003) Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43:433–438

    Article  CAS  PubMed  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure—function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Article  Google Scholar 

  • Mester T, Peña M, Field JA (1996) Nutrient regulation of extracellular peroxidases in the white rot fungus, Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 44:778–784

    CAS  Google Scholar 

  • Pease EA, Aust SD, Tien M (1991) Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Biochem Biophys Res Commun 179:897–903

    Article  CAS  PubMed  Google Scholar 

  • Poulos T, Edwards S, Wariishi H, Gold M (1993) Crystallographic refinement of lignin peroxidase at 2-Å. J Biol Chem 268:4429–4440

    CAS  PubMed  Google Scholar 

  • Ritch J, Thomas G, Nipper VJ, Akileswaran L, Smith AJ, Pribnow DG, Gold MH (1991) Lignin peroxidase from the basidiomycete Phanerochaete chrysosporium is synthesized as a preproenzyme. Gene 107:119–126

    Article  CAS  PubMed  Google Scholar 

  • Scheel T, Höfer M, Ludwig S, Hölker U (2000) Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. Appl Microbiol Biotechnol 54:686–691

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold M, Poulos T (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J Biol Chem 269:32759–32767

    CAS  PubMed  Google Scholar 

  • Tello M, Corsini G, Larrondo LF, Salas L, Lobos S, Vicuña R (2000) Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1490:137–144

    Article  CAS  PubMed  Google Scholar 

  • Wariishi H, Gold MH (1989) Lignin peroxidase compound III: formation, inactivation, and conversion to the native enzyme. FEBS Lett 243:165–168

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold M (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (Center of Excellence “Microbial Resources Research Unit” grant no. 53305 and research grant no. 205027 to K.H.). Terhi K. Hakala was supported by Viikki Graduate School of Biosciences, University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Hildén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakala, T.K., Hildén, K., Maijala, P. et al. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus . Appl Microbiol Biotechnol 73, 839–849 (2006). https://doi.org/10.1007/s00253-006-0541-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0541-0

Keywords

Navigation