Skip to main content

Advertisement

Log in

Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The concept of utilizing excess biomass or wastes from agricultural and agro-industrial residues to produce energy, feeds or foods, and other useful products is not necessarily new. Recently, fermentation of biomass has gained considerable attention due to the forthcoming scarcity of fossil fuels and also due to the necessity of increasing world food and feed supplies. A cost-effective viable process for lactic acid production has to be developed for which several attempts have been initiated. Fermentation techniques result in the production of either d (−) or l (+) lactic acid, or a racemic mixture of both, depending on the type of organism used. The interest in the fermentative production of lactic acid has increased due to the prospects of environmental friendliness and of using renewable resources instead of petrochemicals. Amylolytic bacteria Lactobacillus amylovorus ATCC 33622 is reported to have the efficiency of full conversion of liquefied cornstarch to lactic acid with a productivity of 20 g l−1 h−1. A maximum of 35 g l−1 h−1 was reported using a high cell density of L. helveticus (27 g l−1) with a complete conversion of 55- to 60-g l−1 lactose present in whey. Simultaneous saccharification and fermentation is proved to be best in the sense of high substrate concentration in lower reactor volume and low fermentation cost. In this review, a survey has been made to see how effectively the fermentation technology explored and exploited the cheaply available source materials for value addition with special emphasis on lactic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aksu Z, Kutsal T (1986) Lactic acid production from molasses utilizing Lactobacillus delbrueckii and invertase together. Biotechnol Lett 8:157–160

    Article  CAS  Google Scholar 

  • Altaf M, Naveena BJ, Venkateshwar M, Kumar EV, Reddy G (2006) Single step fermentation of starch to l(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract—optimization by RSM. Proc Biochem 41:465–472

    Article  CAS  Google Scholar 

  • Anuradha R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Proc Biochem 35:367–375

    Article  CAS  Google Scholar 

  • Barbosa MCS, Soccol CR, Marin B, Todeschini ML, Tonial T, Flores V (1995) Advance in solidstate fermentation. Kluwer, Dordrecht

    Google Scholar 

  • Bohak I, Back W, Richter L, Ehrmann M, Ludwing W, Schleifer KH (1998) Lactobacillus amylolyticus sp. nov., isolated from beer malt and beer wort. System Appl Microbiol 21:360–364

    Article  CAS  Google Scholar 

  • Bramorski A, Soccol CR, Christen P, Revah S (1998) Fruity aroma production by Ceratocystis fibriate in solid culture from agro-industrial waste. Rev Microbiol 29:208–212

    Article  Google Scholar 

  • Cheng P, Muller RE, Jaeger S, Bajpai R, Jannotti EL (1991) Lactic acid production from enzyme thinned cornstarch using Lactobacillus amylovorus. J Ind Microbiol 7:27–34

    Article  CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  • Datta R, Tsai SP, Bonsignor P, Moon S, Frank J (1995) Technological and economical potential of polylactic acid and lactic acid derivatives. FEMS Microbiol Rev 16:221–231

    Article  CAS  Google Scholar 

  • Dimerci A, Pometto AL III, Johnson KE (1993) Lactic acid production in a mixed culture biofilm reactor. Appl Environ Microbiol 59:203–207

    Article  Google Scholar 

  • Dong XY, Bai S, Sun Y (1996) Production of l(−)-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnol Lett 18:225–228

    Article  CAS  Google Scholar 

  • Du JX, Cao NJ, Gong CS, Tsao GT (1998) Production of l-lactic acid by Rhizopus oryzae in a bubble column fermenter. Appl Biochem Biotechnol 70:323–329

    Article  PubMed  Google Scholar 

  • Fitzpatrick JJ, Keeffe UO (2001) Influence on whey protein hydrolyste addition to whey permeate batch fermentations for producing lactic acid. Proc Biochem 37:183–186

    Article  CAS  Google Scholar 

  • Gao M, Hirata M, Toorisaka E, Hano T (2006a) Study on acid-hydrolysis of spent cells for lactic acid fermentation. Biochem Eng J 28:87–91

    Article  CAS  Google Scholar 

  • Gao M, Hirata M, Toorisaka E, Hano T (2006b) Acid-hydrolysis of fish wastes for lactic acid fermentation. Bioresour Technol 97:2414–2420

    Article  CAS  PubMed  Google Scholar 

  • Goksungur Y, Guvenc U (1999) Batch and continuous production of lactic acid from beet molasses by immobilized Lactobacillus delbrueckii IFO 3202. J Chem Technol Biotechnol 74:131–136

    Article  CAS  Google Scholar 

  • Gregor R (1999) The scientific basis for probiotic stains of Lactobacillus. Appl Environ Microbiol 60:3763–3766

    Google Scholar 

  • Hamamci H, Ryu DDY (1994) Production of l (+)-lactic acid using immobilized Rhizopus oryzae—reactor performance based on kinetic model and simulation. Appl Biochem Biotechnol 44:125–133

    Article  CAS  Google Scholar 

  • Hang YD (1989) Direct fermentation of corn starch to l (+) lactic acid by Rhizopus oryzae. Biotechnol Lett 11:299–300

    Article  CAS  Google Scholar 

  • Hang YD (1990) Direct fermentation of cornstarch to l (+) lactic acid by Rhizopus oryzae. US Patent 4,963,486

  • Hang YD, Hamemei H, Woodams EE (1989) Production of l (+) lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol Lett 11:119–120

    Article  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (1997) l-Lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme Microb Technol 20:301–307

    Article  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme Microb Technol 26:87–107

    Article  CAS  PubMed  Google Scholar 

  • Hofvendahl K, Akerberg C, Zacchi G, Hahn-Hägerdal B (1999) Simultaneous enzymatic wheat starch saccharifiaction and fermentation to lactic acid by Lactococcus lactis. Appl Microbiol Biotechnol 52:163–169

    Article  CAS  Google Scholar 

  • Hujanen M, Linko S, Linko YY, Leisola M (2001) Optimisation of media and cultivation conditions for l(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol 56:126–130

    Article  CAS  PubMed  Google Scholar 

  • Inskeep GC, Taylor GG, Breitzke WC (1952) Lactic acid from corn sugar. Ind Eng Chem 44:1955–1966

    Article  CAS  Google Scholar 

  • Jin B, Yin P, Ma Y, Zhao L (2005) Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. J Ind Microbiol Biotechnol 32:678–686

    Article  CAS  PubMed  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006a) Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Proc Biochem 41:759–763

    Article  CAS  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006b) Simultaneous saccharification and l-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnol Lett 28:1823–1826

    Article  CAS  PubMed  Google Scholar 

  • Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV (2006) Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Proc Biochem 41:120–126

    Article  CAS  Google Scholar 

  • Karel M, Jaroslav V, Vera H, Mojmir R (1997) Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 56:25–31

    Article  Google Scholar 

  • Kotzamanidis C, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J Microbiol Biotechnol 18:441–448

    Article  CAS  Google Scholar 

  • Krishnan S, Bhattacharya S, Karanth NG (1998) Media optimization for production of lactic acid by Lactobacillus plantarum NCIM 2084 using response surface methodology. Food Biotechnol 12:105–121

    Article  CAS  Google Scholar 

  • Kristoficova L, Rosenberg M, Vlnova A, Sajbidor J, Cetrik M (1991) Selection of Rhizopus strains for l (+) lactic acid and gamma-linolenic acid production. Folia Microbiol 36:451–455

    Article  Google Scholar 

  • Kulozik U, Wilde J (1999) Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus. Enzyme Microb Technol 24:297–302

    Article  CAS  Google Scholar 

  • Kurbanoglu EB, Kurbanoglu NI (2003) Utilization for lactic acid with a new acid hydrolysis of ram horn waste. FEMS Microbiol Lett 225:29–34

    Article  CAS  PubMed  Google Scholar 

  • Kurusava H, Ishikawa H, Tanaka H (1988) l-lactic acid production from starch by co-immobilized mixed culture system of Aspergilus awamori and Streptococcus lactis. Biotechnol Bioeng 31:183–187

    Article  Google Scholar 

  • Linko YY, Javaneinen P (1996) Simultaneous liquefaction, saccharification and lactic acid fermentation on barley starch. Enzyme Microb Technol 19:118–123

    Article  CAS  Google Scholar 

  • Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95

    Article  CAS  PubMed  Google Scholar 

  • Lockwood LB, Ward GE, May OE (1936) The physiology of Rhizopus oryzae. J Agric Res 53:849–857

    CAS  Google Scholar 

  • Montelongo J-L, Chassy BM, McCord JD (1993) Lactobacillus salivarious for conversion of soy molasses into lactic acid. J Food Sci 58:863–866

    Google Scholar 

  • Nampoothiri KM, Pandey A (1996) Solid state fermentation for l-glutamic acid production using Brevibacterium sp. Biotechnol Lett 16:199–204

    Article  Google Scholar 

  • Nampoothiri KM, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A (2004) Process optimization for fungal chitinase production by Trichoderma harzianum. Proc Biochem 39:1583–1590

    Article  CAS  Google Scholar 

  • Nancib A, Nancib N, Meziane-Cherif D, Boudenbir A, Fick M, Boudrant J (2005) Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus. Biores Technol 96:63–67

    Article  CAS  Google Scholar 

  • Naveena BJ (2004) Amylolytic bacterial l(+) lactic acid production in solid state fermentation and molecular identification of the strain. Ph.D. thesis, Osmania University, Hyderabad, India

  • Naveena BJ, Altaf M, Bhadriah K, Reddy G (2005) Selection of medium components by Placket Burman design for the production of l(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour Technol 96:485–490

    Article  CAS  PubMed  Google Scholar 

  • Nolasco-Hipolito C, Matsunaka T, Kobayashi G, Sonomoto K, Ishizaki A (2002) Synchronised fresh cell bioreactor system for continuous L(+) lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. J Biosci Bioeng 93:281–287

    Article  CAS  PubMed  Google Scholar 

  • Ohkouchi Y, Inoue Y (2006) Direct production of l(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97:1554–1562

    Article  CAS  PubMed  Google Scholar 

  • Pandey A (1991) Aspects of design of fermenter in solid-state fermentation. Proc Biochem 26:355–361

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR (2000) Economic utilization of crop residues for value addition: a future approach. J Sci Ind Res 59:12–22

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers, New Delhi

    Google Scholar 

  • Pauli T, Fitzpatrick JJ (2002) Malt combing nuts as a nutrient supplement to whey permeate for producing lactic by fermentation with Lactobacillus casei. Proc Biochem 38:1–6

    Article  CAS  Google Scholar 

  • Pintado J, Guyot JP, Raimbault M (1999) Lactic acid production from mussel processing wastes with an amylolytic bacterial strain. Enzyme Microb Technol 24:590–598

    Article  CAS  Google Scholar 

  • Podlech PAS, Luna MF, Jerke PR, De Souza Neto CAC, Dos Passos RF, Souza O, Borzani W (1990) Semicontinuous lactic fermentation of whey by Lactobacillus bulgaricus. I. Experimental results. Biotechnol Lett 12:531–534

    Article  CAS  Google Scholar 

  • Prescott SC, Dunn CG (1959) Industrial microbiology, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Raccach M, Mamiro T (1997) The effect of temperature on the lactic acid fermentation of rye flour. Food Microbiol 4:213–220

    Article  Google Scholar 

  • Ramachandran S, Patel AK, Nampoothiri KM, Francis F, Nagi V, Szakacs G, Pandey A (2004) Coconut oilcake—a potential raw material for the production of alpha amylase. Bioresour Technol 93:169–174

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Trager A (1994) l(+) Lactic acid from sweet sorghum by submerged and solid state fermentations. Acta Biotechnol 14:367–378

    Article  CAS  Google Scholar 

  • Rojan PJ, Nampoothiri KM, Nair AS, Pandey A (2005) l(+)-Lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol Lett 27:1685–1688

    Article  CAS  PubMed  Google Scholar 

  • Roukas T, Kotzekidou P (1998) Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacilluscasei and Lactococcus lactis cells using fedbatch culture. Enzyme Microb Technol 22:199–204

    Article  CAS  Google Scholar 

  • Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol Bioeng 82:865–871

    Article  CAS  Google Scholar 

  • Senthuran A, Senthuran V, Mattiasson B, Kaul R (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol Bioeng 55:843–853

    Article  Google Scholar 

  • Sethi V, Maini SB (1999) Biotechnology: food fermentation. Asiatech Publishers, New Delhi

    Google Scholar 

  • Shankaranad VS, Lonsane BK (1994) Solid-state fermentation. Wiley Eastern Publishers, New Delhi, India

    Google Scholar 

  • Sharma N, Wati L, Singh D (2003) Production of lactic acid during bioremediation of anaerobically digested molasses spent wash. Indian J Microbiol 43:119–121

    Google Scholar 

  • Singh SK, Ahmed SU, Pandey A (2006) Metabolic engineering approaches for lactic acid production. Proc Biochem 41:991–1000

    Article  CAS  Google Scholar 

  • Snell RL, Lowery CE (1964) Calcium l (−) lactate and l (−) lactic acid production. US Patent 3,125,494

  • Soccol C, Marin B, Raimbault M, Lebeault JM (1994) Potential of solid state fermentation for the production of l(+) lactic acid by Rhizopus oryzae. Appl Microbiol Biotechnol 41:286–290

    Article  CAS  Google Scholar 

  • Sreenath HK, Moldes AB, Koegel RG, Straub RJ (2001) Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. J Biosci Bioeng 92:518–523

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Ingraham JL, Wheelis JL, Painter PR (1986) General microbiology. Macmillan, London

    Book  Google Scholar 

  • Tango MS, Ghaly AE (2002) A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Appl Microbiol Biotechnol 58:712–720

    Article  CAS  PubMed  Google Scholar 

  • Timbuntam W, Sriroth K, Tokiwa Y (2006) Lactic acid production from sugar-cane juice by a newly isolated Lactobacillus sp. Biotechnol Lett 28:811–814

    Article  CAS  PubMed  Google Scholar 

  • Tiwari KP, Mishra N, Pandey A (1979) Lactic acid formation in presence of some vitamins by Lactobacillus delbrueckii. Indian J Microbiol 19:155–157

    CAS  Google Scholar 

  • Tsai TS, Millard CS (1994) Improved pretreatment process for lactic acid production. PCT International Applied Patent WO 94/13826: PCT/US93/11759

  • Vanwalsum GP, Allen SG, Spencer MJ, Laser MS, Antal MJ, Lynd LR (1996) Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Appl Biochem Biotechnol 57–58:157–170

    Article  Google Scholar 

  • Venkatesh KV (1997) Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour Technol 62:91–98

    Article  CAS  Google Scholar 

  • Vickroy TB (1985) Comprehensive biotechnology. Dic Pergamon, Toronto

    Google Scholar 

  • Vishnu C, Seenayya G, Reddy G (2000) Direct fermentation of starch to l(+) lactic acid by amylase producing Lactobacillus amylophilus GV6. Bioprocess Eng 23:155–158

    Article  CAS  Google Scholar 

  • Wang H (1998) Improvement of citric acid production by Aspergillus niger with addition of phytase to beet molasses. Bioresour Technol 65:243–247

    Article  CAS  Google Scholar 

  • Ward GE, Lockwood LB, May OE (1938) Fermentation process for the manufacture of dextro-lactic acid. US Patent 2,132,712

  • Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  • Woiciechowski AL, Nitsche S, Pandey A, Socool CR (2002) Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study. Braz Arch Biol Technol 45:393–400

    Article  CAS  Google Scholar 

  • Xavier S, Lonsane BK (1994) Sugarcane pressmud as a novel and inexpensive substrate for production of lactic acid in a solid state fermentation system. Appl Microbiol Biotechnol 41:291–295

    Article  CAS  Google Scholar 

  • Xiaodong W, Xuan G, Rakshit SK (1997) Direct fermentation of lactic acid from cassava or other starch substrates. Biotechnol Lett 9:841–843

    Article  Google Scholar 

  • Yin PM, Nishina N, Kosakai Y, Yahiro K, Park Y, Okabe M (1997) Enhanced production of l(−)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng 84:249–253

    Article  CAS  Google Scholar 

  • Yin PM, Yahiro K, Ishigaki T, Park Y, Okabe M (1998) l(−)-Lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor. J Ferment Bioeng 85:96–100

    Article  CAS  Google Scholar 

  • Yu RU, Hang YD (1989) Kinetics of direct fermentation of agricultural commodities to l(+) lactic acid by Rhizopus oryzae. Biotechnol Lett 11:597–600

    Article  CAS  Google Scholar 

  • Yumoto I, Ikeda K (1995) Direct fermentation of starch to l(+)-lactic acid using Lactobacillus amylophilus. Biotechnol Lett 17:543–546

    Article  CAS  Google Scholar 

  • Yun J-S, Wee Y-J, Kim J-N, Ryu H-W (2004) Fermentative production of dl lactic acid from amylase treated rice and wheat brans hydrolysate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol Lett 18:1613–1616

    Article  Google Scholar 

  • Zayed G, Mostafa N (1992) Studies on the production and kinetic aspects of single cell protein from sugarcane bagasse saccharified with Aspergillus niger. Biomass Bioenergy 3:363–367

    Article  CAS  Google Scholar 

  • Zhang DX, Cheryan M (1991) Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnol Lett 10:733–738

    Article  Google Scholar 

  • Zhou SD, McCaskey TA, Broder J (1995) Evaluation of nitrogen supplement for bioconversion of municipal solid waste for lactic acid. Appl Biochem Biotechnol 57–58:517–527

    Google Scholar 

  • Zhou Y, Du JX, Tsao GT (2000) Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl Biochem Biotechnol 84:779–789

    Article  PubMed  Google Scholar 

  • Zhou Y, Dominguez JM, Cao NJ, Du JX, Tsao GT (1999) Optimization of l-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl Biochem Biotechnol 77:40

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Council of Scientific and Industrial Research (CSIR) Task force (CMM 0006) program for providing the financial support. One of the authors (RPJ) is deeply indebted to CSIR for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Madhavan Nampoothiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, R.P., Nampoothiri, K.M. & Pandey, A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74, 524–534 (2007). https://doi.org/10.1007/s00253-006-0779-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0779-6

Keywords

Navigation