Skip to main content
Log in

Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated when Sphingomonas sp. strain PheB4 isolated from surface mangrove sediments was grown in either phenanthrene-containing mineral salts medium (PMSM) or nutrient broth (NB). The NB-grown culture exhibited a more rapid cometabolic degradation of single and mixed non-growth substrate PAHs compared to the PMSM-grown culture. The concentrations of PAH metabolites were also lower in NB-grown culture than in PMSM-grown culture, suggesting that NB-grown culture removed metabolites at a faster rate, particularly, for metabolites produced from cometabolic degradation of a binary mixture of PAHs. Cometabolic pathways of single PAH (anthracene, fluorene, or fluoranthene) in NB-grown culture showed similarity to that in PMSM-grown culture. However, cometabolic pathways of mixed PAHs were more diverse in NB-grown culture than that in PMSM-grown culture. These results indicated that nutrient rich medium was effective in enhancing cometabolic degradation of mixed PAHs concomitant with a rapid removal of metabolites, which could be useful for the bioremediation of mixed PAHs contaminated sites using Sphingomonas sp. strain PheB4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bezalel L, Hadar Y, Fu P, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele J-P (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164

    Article  CAS  PubMed  Google Scholar 

  • Breedveld GD, Sparrevik M (2000) Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11:391–399

    Article  CAS  PubMed  Google Scholar 

  • Carmichael LM, Pfaender FK (1997) The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation 8:1–13

    Article  CAS  PubMed  Google Scholar 

  • Casellas M, Grifoll M, Bayona JM, Solanas AM (1997) New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl Environ Microbiol 63:819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    Article  CAS  Google Scholar 

  • Cheung P-Y, Kinkle BK (2005) Effects of nutrients and surfactants on pyrene mineralization and Mycobacterium spp. populations in contaminated soil. Soil Biol Biochem 37:1401–1405

    Article  CAS  Google Scholar 

  • Criddle CS (1993) The kinetics of cometabolism. Biotechnol Bioeng 41:1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Demanèche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y (2004) Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenase from a Sphingomonas strain that degrade various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:6714–6725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guha S, Peters CA, Jaffe PR (1999) Multisubstrate biodegradation kinetics of naphthalene, phenanthrene and pyrene mixtures. Biotechnol Bioeng 65:491–499

    Article  CAS  PubMed  Google Scholar 

  • Ho Y, Jackson M, Yang Y, Mueller JG, Pritchard PH (2000) Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. J Ind Microbiol Biotechnol 24:100–112

    Article  CAS  Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazunga C, Aitken MD, Gold A, Sangaiah R (2001) Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene. Environ Sci Technol 35:917–922

    Article  CAS  PubMed  Google Scholar 

  • Kelley I, Freeman JP, Evans E, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Zylstra GJ, Freeman JP, Heinze TM, Deck J, Cerniglia CE (1997) Evidence for the role of 2-2-hydroxychromene-2-carboxylate isomerase in the degradation of anthracene by Sphingomonas yanoikuyae B1. FEMS Microbiol Lett 153:479–484

    Article  CAS  PubMed  Google Scholar 

  • Kim TJ, Lee EY, Kim YJ, Cho K-S, Ryu HW (2003) Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J Microbiol Biotechnol 19:411–417

    Article  CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenase. J Bacteriol 185:3828–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Park J-W, Ahn I-S (2003) Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. J Hazard Mater 105:157–167

    Article  CAS  PubMed  Google Scholar 

  • López Z, Vila J, Minguillón C, Grifoll M (2006) Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl Microbiol Biotechnol 70:747–756

    Article  PubMed  CAS  Google Scholar 

  • Lotfabad SK, Gray MR (2002) Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 60:361–365

    Article  CAS  PubMed  Google Scholar 

  • Luan TG, Yu KSH, Zhong Y, Zhou HW, Lan CY, Tam NFY (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Molina M, Araujo R, Hodson RR (1999) Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can J Microbiol 45:520–529

    Article  CAS  PubMed  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojiri HN, Nam J-W, Kosaka M, Morii K-I, Takemura T, Furihata K, Yamane H, Omori T (1999) Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol 181:3105–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol Rev 43:59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T (2004) Isolation and characterization of gene encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol Lett 238:297–305

    CAS  PubMed  Google Scholar 

  • Ramsay MA, Swannell RPJ, Shipton WA, Duke NC, Hill RT (2000) Effect of bioremediation on the microbial community in oiled mangrove sediments. Mar Pollut Bull 41:413–419

    Article  CAS  Google Scholar 

  • Rehmann K, Hertkorn N, Kettrup AA (2001) Fluoranthene metabolism in Mycobacterium sp. strain KR20: identification of pathway intermediates during degradation and growth. Microbiology 147:2783–2794

    Article  CAS  PubMed  Google Scholar 

  • Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Story SP, Parker SH, Kline JD, Tzeng T-RJ, Mueller JG, Kline EL (2000) Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, and fluoranthene by Sphingomonas paucimobilis var. EPA 505. Gene 260:155–169

    Article  CAS  PubMed  Google Scholar 

  • Story SP, Kline EK, Hughes TA, Riley MB, Hayasaka SS (2004) Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505. Arch Environ Contam Toxicol 47:168–176

    Article  CAS  PubMed  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonads. Appl Environ Microbiol 61:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swannell RP, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam NFY (2006) Pollution studies on mangroves in Hong Kong and mainland China. In: Wolanski E (ed) The environment in Asia Pacific harbours. Springer, Berlin Heidelberg New York, pp 147–163

    Chapter  Google Scholar 

  • Tam NFY, Ke L, Wang XH, Wong YS (2001) Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ Pollut 114:252–263

    Google Scholar 

  • Tam NFY, Guo CL, Yau WY, Wong YS (2002) Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar Pollut Bull 45:316–324

    Article  CAS  PubMed  Google Scholar 

  • Tongpim S, Pickard MA (1999) Cometabolic oxidation of phenanthrene to phenanthrene tran-9,10-dihydrodiol by Mycobacterium strain S1 growing on anthracene in the presence of phenanthrene. Can J Microbiol 45:369–376

    Article  CAS  PubMed  Google Scholar 

  • van Herwijnen R, Wattiau P, Bastiaens L, Daal L, Jonker L, Springael D, Govers HAJ, Parsons JR (2003) Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res Microbiol 154:199–206

    Article  PubMed  CAS  Google Scholar 

  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard M-E, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152:861–872

    Article  CAS  PubMed  Google Scholar 

  • Yamazoe A, Yagi O, Oyaizu H (2004) Biotransformation of fluorene, diphenyl ether, dibenzo-p-dioxin and carbazole by Janibacter sp. Biotechnol Lett 26:479–486

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Luan TG, Zhou HW, Lan CY, Tam NFY (2006) Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp. Environ Toxicol Chem 25:2853–2859

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. S. Wong, Lilian Vrijmoed, Paul Shin, S.G. Cheung, H. W. Zhou, and Ting Zhen for their advice and assistance. The financial support from National Natural Science Foundation of China (no. 20307012) and 863 Hi-Tech Research and Development Program of China (no. 2002AA649230) as well as from Research Grants Council of the Hong Kong SAR (project no. CityU 1449/05M, 9041073) are gratefully acknowledged. The Administrative Bureau of Guangdong Neilingding Futian National Nature Reserve is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiangang Luan or Nora F. Y. Tam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Luan, T., Wang, X. et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75, 175–186 (2007). https://doi.org/10.1007/s00253-006-0789-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0789-4

Keywords

Navigation