Skip to main content
Log in

Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast—Exophiala oligosperma R1

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Different nitriles were used as sole sources of nitrogen in a series of enrichments under acidic conditions to isolate acidotolerant nitriles hydrolysing microorganisms. From an enrichment in Na–citrate–phosphate buffer at pH 4 with glucose as carbon source and phenylacetonitrile as sole source of nitrogen, a black yeast (strain R1) was obtained which was identified by subsequent 18S rRNA gene sequencing as Exophiala oligosperma. The growth conditions of the organism were optimized for the production of cell material and the induction of the nitrile converting activity. Resting cell experiments demonstrated that phenylacetonitrile was converted via phenylacetic acid and 2-hydroxyphenylacetic acid. The organism could grow at pH 4 with phenylacetonitrile as sole source of carbon, nitrogen, and energy. The nitriles hydrolysing activity was also detected in cell-free extracts and indications for a nitrilase activity were found. The cell-free extracts converted, in addition to phenylacetonitrile, also different substituted phenylacetonitriles. Whole cells of E. oligosperma R1 converted phenylacetonitrile with almost the same reaction rates in the pH range from pH 1.5–pH 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bossler AD, Richter SS, Chavez AJ, Vogelgesang SA, Sutton DA, Grooters AM, Rinaldi MG, de Hoog GS, Pfaller MA (2003) Exophiala oligosperma causing olecranon bursitis. J Clin Microbiol 41:4779–4782

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bragulat MR, Abarca ML, Bruguera MT, Cabanes FJ (1991) Dyes as fungal inhibitors: effect on colony diameter. Appl Environ Microbiol 57:2777–2780

    Article  CAS  Google Scholar 

  • Brewis E, Van der Walt JP, Prior BA (1995) The utilization of aromatic, cyclic and heterocyclic nitriles by yeasts. Syst Appl Microbiol 18:338–342

    Article  CAS  Google Scholar 

  • Bunch AW (1998) Nitriles. In: Rehm HJ, Reed G (eds) Biotechnology, Vol 8a, Biotransformations I, Chap. 6. Wiley-VCH, Weinheim, pp. 277–324

    Google Scholar 

  • Cox HH, Faber BW, Van Heiningen WN, Radhoe H, Doddema HJ, Harder W (1996) Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Appl Environ Microbiol 62:1471–1474

    Article  CAS  Google Scholar 

  • De Hoog GS, Vicente V, Caligiorne RB, Kantarcioglu S, Tintelnot K, Gerrits van den Ende AH, Haase G (2003) Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol 41:4767–4778

    Article  Google Scholar 

  • De Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie van Leeuwenhoek 90:257–268

    Article  Google Scholar 

  • Dias JCT, Rezende RP, Rosa CA, Lachanche M-A, Linardi VR (2000) Enzymatic degradation of nitriles by a Candidda guilliermodii UFMG-Y65. Can J Microbiol 46:525–531

    Article  CAS  Google Scholar 

  • Estevez E, Veiga MC, Kennes C (2005a) Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotech 32:33–37

    Article  CAS  Google Scholar 

  • Estevez E, Veiga MC, Kennes C (2005b) Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Appl Microbiol Biotechnol 67:563–568

    Article  CAS  Google Scholar 

  • Fukuda Y, Harada T, Izumi Y (1973) Formation of l-α-hydroxyacids from dl-α-hydroxynitriles by Torulopsis candida GN405. J Ferment Technol 51:393–397

    CAS  Google Scholar 

  • Goldlust A, Bohak Z (1989) Induction, purification and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis. Biotech Appl Biochem 11:581–601

    CAS  Google Scholar 

  • Gunsch CK, Cheng Q, Kinney KA, Szaniszlo PJ, Whitman CP (2005) Identification of a homogentisate-1,2-dioxygenase gene in the fungus Exophiala lecanii-corni: analysis and implications. Appl Microbiol Biotechnol 68:405–411

    Article  CAS  Google Scholar 

  • Harper DB (1977) Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem J 167:685–692

    Article  CAS  Google Scholar 

  • Hasegawa Y, Nakai Y, Tokuyama T, Iwaki H (2000) Purification and characterization of cyclohexanone 1,2-monooxygenase from Exophiala jeanselmei strain KUFI-6N. Biosci Biotechnol Biochem 64:2696–2698

    Article  CAS  Google Scholar 

  • Hocking AD, Pitt JI (1980) Dichloran–glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39:488–492

    Article  CAS  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie van Leeuwenhoek 86:287–294

    Article  Google Scholar 

  • Kaplan O, Nikolaou K, Pišvejcová A, Martinková L (2006a) Hydrolysis of nitriles and amides by filamentous fungi. Enzyme Microb Technol 38:260–264

    Article  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Charvatova-Pisvejcova A, Martinkova L (2006b) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotech 33:891–896

    Article  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Fialová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, Martínková L. (2006c) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  CAS  Google Scholar 

  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC 191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 151:3639–3648

    Article  CAS  Google Scholar 

  • Kuwahara M, Yanase H, Ishida Y, Kikuchi Y (1980) Metabolism of aliphatic nitriles in Fusarium solani. J Ferment Technol 58:573–577

    CAS  Google Scholar 

  • Linardi, VR, Dias JCT, Rosa CA (1996) Utilisation of acetonitrile and other aliphatic nitriles by a Candida famata strain. FEMS Microbiol Lett 44:67–71

    Article  Google Scholar 

  • Martinková L, Křen V (2002) Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal Biotransform 20:73–93

    Article  Google Scholar 

  • Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade. A nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron Asymmetry 17:320–323

    Article  CAS  Google Scholar 

  • Meier J, Babenzien H-D, Wendt-Potthoff K (2004) Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany). Biogeochemistry 67:135–156

    Article  CAS  Google Scholar 

  • Pfennig M, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

    Article  CAS  Google Scholar 

  • Prenafeta-Boldu FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  CAS  Google Scholar 

  • Qi B, Moe WM, Kinney KA (2002) Biodegradation of volatile organic compounds by five fungal species. Appl Microbiol Biotechnol 58:684–689

    Article  CAS  Google Scholar 

  • Rezende RP, Dias JCT, Rosa CA, Carazza F, Linardi VR (1999) Utilisation of nitriles by yeasts strains isolated from a Brazilian gold mine. J Gen Appl Microbiol 45:185–192

    Article  CAS  Google Scholar 

  • Rezende RP, Dias JCT, Ferraz V, Linardi VR (2000) Metabolism of benzonitrile by Cryptococcus sp. UFMG-Y28. J Basic Microbiol 40:389–392

    Article  CAS  Google Scholar 

  • Rustler S, Müller A, Windeisen V, Chmura A, Fernandes B, Kiziak C, Stolz A (2007) Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191. Enzyme Microb Technol 40:598–606

    Article  CAS  Google Scholar 

  • Schulze B (2002) Hydrolysis and formation of C-N bonds. Chapter 12. In: Drauz, K, Waldmann, H (ed) Enzyme catalysis in organic synthesis vol. II. Wiley-VCH, Weinheim, pp. 699–715

    Chapter  Google Scholar 

  • Stach JE, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4:169–182

    Article  Google Scholar 

  • Sterflinger K, Prillinger H (2001) Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria). Antonie van Leeuwenhoek 80:275–286

    Article  CAS  Google Scholar 

  • Untereiner WA, Naveaeu FA (1999) Molecular systematics of the Herpotrichiellaceae with an assessment of the phylogenetic positions of Exophiala dermatitidis and Phialophora americana. Mycologia 91:67–83

    Article  CAS  Google Scholar 

  • Untereiner WA, Straus NA, Malloch D (1995) A molecular-morphotaxonomic approach to the systematics of the Herpotrichiellaceae and allied black yeasts. Mycol Res 99:897–913

    Article  CAS  Google Scholar 

  • Van der Walt, JP, Brewis EA, Prior BA (1993) A note on the utilization of aliphatic nitriles by yeasts. Syst Appl Microbiol 16:330–332

    Article  Google Scholar 

  • Woertz JR, Kinney KA, McIntosh ND, Szaniszlo PJ (2001) Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni. Biotechnol Bioeng 75:550–558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Katrin Wendt-Potthof and Dr. Mathias Koschorreck (UFZ, Leipzig/Halle, Germany) for the sample from “Restsee 111” and B. Jones (Bangor Wales) for a sample of acid mine drainage from Parys Mountain, North Wales. Furthermore, we are grateful to P. Hoffmann (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ, Braunschweig, Germany) and G.S. de Hoog (Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands) for their help in identification of E. oligospermum.

The work was supported in the framework of the CERC3 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stolz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rustler, S., Stolz, A. Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast—Exophiala oligosperma R1. Appl Microbiol Biotechnol 75, 899–908 (2007). https://doi.org/10.1007/s00253-007-0890-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0890-3

Keywords

Navigation