Skip to main content

Advertisement

Log in

Cloning, characterization, and mutational analysis of a highly active and stable l-arabinitol 4-dehydrogenase from Neurospora crassa

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An NAD+-dependent l-arabinitol 4-dehydrogenase (LAD, EC 1.1.1.12) from Neurospora crassa was cloned and expressed in Escherichia coli and purified to homogeneity. The enzyme was a homotetramer and contained two Zn2+ ions per subunit, displaying similar characteristics to medium-chain sorbitol dehydrogenases (SDHs). High enzymatic activity was observed for substrates l-arabinitol, adonitol, and xylitol and no activity for d-mannitol, d-arabinitol, or d-sorbitol. The enzyme showed strong preference for NAD+ but also displayed a very low yet detectable activity with NADP+. Mutational analysis of residue F59, the single different substrate-binding residue between LADs and d-SDHs, failed to confer the enzyme the ability to accept d-sorbitol as a substrate, suggesting that the amino acids flanking the active site cleft may be responsible for the different activity and affinity patterns between LADs and SDHs. This enzyme should be useful for in vivo and in vitro production of xylitol and ethanol from l-arabinose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banfield MJ, Salvucci ME, Baker EN, Smith CA (2001) Crystal structure of the NADP(H)-dependent ketose reductase from Bemisia argentifolii at 2.3 A resolution. J Mol Biol 306:239–250

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cleland WW (1979) Statistical analysis of enzyme kinetic data. Methods Enzymol 63:103–38

    Article  CAS  PubMed  Google Scholar 

  • de Groot MJ, Prathumpai W, Visser J, Ruijter GJ (2005) Metabolic control analysis of Aspergillus niger L-arabinose catabolism. Biotechnol Prog 21:1610–1616

    Article  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Hespell R (1998) Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J Agric Food Chem 46:2615–2619

    Article  CAS  Google Scholar 

  • Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund MF (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlsson C, Jornvall H, Hoog JO (1995) Zinc binding of alcohol and sorbitol dehydrogenases. Adv Exp Med Biol 372:397–406

    Article  CAS  PubMed  Google Scholar 

  • Korkhin Y, Kalb AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967–981

    Article  CAS  PubMed  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–83

    Article  CAS  PubMed  Google Scholar 

  • Lindstad RI, Hermansen LF, McKinley-McKee JS (1992) The kinetic mechanism of sheep liver sorbitol dehydrogenase. Eur J Biochem 210:641–647

    Article  CAS  PubMed  Google Scholar 

  • McMillan JD, Boynton BL (1994) Arabinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol 45–46:569–584

    Article  PubMed  Google Scholar 

  • Pail M, Peterbauer T, Seiboth B, Hametner C, Druzhinina I, Kubicek CP (2004) The metabolic role and evolution of L-arabinitol 4-dehydrogenase of Hypocrea jecorina. Eur J Biochem 271:1864–1872

    Article  CAS  PubMed  Google Scholar 

  • Pauly TA, Ekstrom JL, Beebe DA, Chrunyk B, Cunningham D, Griffor M, Kamath A, Lee SE, Madura R, McGuire D et al (2003) X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. Structure 11:1071–1085

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttila M (2001) Cloning and expression of a fungal L-arabinitol 4-dehydrogenase gene. J Biol Chem 276:40631–40637

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003) Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3:185–189

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Bothast R (1996) Production of L-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Appl Microbiol Biotechnol 45:299–306

    Article  CAS  Google Scholar 

  • Saha B, Bothast R (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22:633–636

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Tran LH, Yogo M, Idota O, Kitamoto N, Kawai K, Takamizawa K (2005) Cloning and expression of NAD+-dependent L-arabinitol 4-dehydrogenase gene (ladA) of Aspergillus oryzae. J Biosci Bioeng 100:472–474

    Article  CAS  PubMed  Google Scholar 

  • Verho R, Londesborough J, Penttila M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349

    Article  CAS  PubMed  Google Scholar 

  • Woodyer R, van der Donk WA, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by Biotechnology Research and Development Consortium (BRDC; Project 2-4-121). Access to Insight II and MOE programs was provided by the University of Illinois School of Chemical Sciences’ Computer Application and Network Services. We thank Nikhil Nair for his help with N. crassa growth and genomic DNA manipulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, R., Zhao, H. Cloning, characterization, and mutational analysis of a highly active and stable l-arabinitol 4-dehydrogenase from Neurospora crassa . Appl Microbiol Biotechnol 77, 845–852 (2007). https://doi.org/10.1007/s00253-007-1225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1225-0

Keywords

Navigation