Skip to main content

Advertisement

Log in

Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Twenty-two strains of Bifidobacterium, representative of eight major species of human origin, were screened for their ability to transform the isoflavones daidzin and daidzein. Most of the strains released the aglycone from daidzin and 12 gave yields higher than 90%. The kinetics of growth, daidzin consumption, and daidzein production indicated that the hydrolytic activity occurred during the growth. The supernatant of the majority of the strains did not release the aglycone from daidzin, suggesting that cell-associated β-glucosidases (β-Glu) are mainly responsible for the metabolism of soybean glyco-conjugates. Cell-associated β-Glu was mainly intracellular and significantly varied among the species and the strains. The lack of β-Glu was correlated with the inability to hydrolyze daidzin. Although S-equol production by anaerobic intestinal bacteria has been established, information on S-equol-producing bifidobacteria is contradictory. In this study, 22 bifidobacteria failed to transform daidzein into reduced metabolites under all the experimental conditions, excluding any role in the reductive pathway of daidzein toward the production of S-equol. These results suggest that selected probiotic strains of Bifidobacterium can be used to speed up the release of daidzein, improving its bioavailability for absorption by colonic mucosa and/or biotransformation to S-equol by other intestinal microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29:95–120

    CAS  PubMed  Google Scholar 

  • Amaretti A, Bernardi T, Tamburini E, Zanoni S, Lomma M, Matteuzzi D, Rossi M (2007) Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides. Appl Environ Microbiol 73:3637–3644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med 230:155–170

    CAS  Google Scholar 

  • Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137:751S–755S

    CAS  PubMed  Google Scholar 

  • Branca F, Lorenzetti S (2005) Health effects of phytoestrogens. Forum Nutr 57:100–111

    Google Scholar 

  • Cassidy A, de Pascual TS, Rimbach G (2003) Molecular mechanisms by which dietary isoflavones potentially prevent atherosclerosis. Expert Rev Mol Med 5:1–15

    PubMed  Google Scholar 

  • Cashman KD (2007) Diet, nutrition, and bone health. J Nutr 137:2507S–2512S

    CAS  PubMed  Google Scholar 

  • Chien HL, Huang HY, Chou CC (2006) Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol 23:772–778

    CAS  PubMed  Google Scholar 

  • Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P (2008) Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol (in press)

  • Day AJ, DuPont M, Saxon Ridley S (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver and beta glucosidase activity. FEBS Lett 436:71–75

    CAS  PubMed  Google Scholar 

  • Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. CA Cancer J Clin 57:260–277

    PubMed  Google Scholar 

  • Garro MS, Aguirre L, Savoy de Giori G (2006) Biological activity of Bifidobacterium longum in response to environmental pH. Appl Microbiol Biotechnol 70:612–617

    CAS  PubMed  Google Scholar 

  • Hur HG, Lay JO Jr, Beger RD, Freeman JP, Rafii F (2000) Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 174:422–428

    CAS  PubMed  Google Scholar 

  • Ioku K, Pongpiriyadach Y, Konishi Y, Takei Y, Nakatani N, Terao J (1998) β-Glucosidase activity in the rat small intestine toward quercitin monoglucosides. Biosci Biotechnol Biochem 62:1428–1431

    CAS  PubMed  Google Scholar 

  • Marotti I, Bonetti A, Biavati B, Catizone P, Dinelli G (2007) Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J Agric Food Chem 55:3913–3919

    CAS  PubMed  Google Scholar 

  • Maruo T, Sakamoto M, Ito C, Toda T, Benno Y (2008) Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58:1221–1227

    CAS  PubMed  Google Scholar 

  • Matthies A, Clavel T, Gütschow M, Engst W, Haller D, Blaut M, Braune A (2008) Conversion of daidzein and genistein by a newly isolated anaerobic bacterium from mouse intestine. Appl Environ Microbiol 74(15):4847–4852

    CAS  PubMed  PubMed Central  Google Scholar 

  • McBain AJ, Macfarlane GT (1998) Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol 47:407–416

    CAS  PubMed  Google Scholar 

  • Miksicek RJ (1995) Estrogenic flavonoids: structural requirements for biological activity. Proc Soc Exp Biol Med 208:44–50

    CAS  PubMed  Google Scholar 

  • Minamida K, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K (2006) Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng 102:247–250

    CAS  PubMed  Google Scholar 

  • Minamida K, Ota K, Nishimukai M, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K (2008) Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 58:1238–1240

    CAS  PubMed  Google Scholar 

  • Otieno DO, Shah NP (2007a) A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous beta-glucosidases. J Appl Microbiol 103:601–612

    CAS  PubMed  Google Scholar 

  • Otieno DO, Shah NP (2007b) Endogenous beta-glucosidase and beta-galactosidase activities from selected probiotic micro-organisms and their role in isoflavone biotransformation in soymilk. J Appl Microbiol 103:910–917

    CAS  PubMed  Google Scholar 

  • Park D, Huang T, Frishman WH (2005) Phytoestrogens as cardioprotective agents. Cardiol Rev 13:13–17

    PubMed  Google Scholar 

  • Pham TT, Shah NP (2007) Biotransformation of isoflavone glycosides by Bifidobacterium animalis in soymilk supplemented with skim milk powder. J Food Sci 72:M316–M324

    CAS  PubMed  Google Scholar 

  • Ritchie MR, Cummings JH, Morton MS, Michael Steel C, Bolton-Smith C, Riches AC (2006) A newly constructed and validated isoflavone database for the assessment of total genistein and daidzein intake. Br J Nutr 95:204–213

    CAS  PubMed  Google Scholar 

  • Rowland I, Faughnan M, Honey L, Wähälä K, Williamson G, Cassidy A (2003) Bioavailability of phyto-oestrogens. Br J Nutr 89:S45–S58

    CAS  PubMed  Google Scholar 

  • Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80:S147–S171

    CAS  PubMed  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Setchell KDR, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758S–767S

    CAS  PubMed  Google Scholar 

  • Setchell KD, Cole SJ (2003) Variations in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling. J Agric Food Chem 51:4146–4155

    CAS  PubMed  Google Scholar 

  • Setchell KDR, Brown NB, Zimmer-Nechemias L, Brashear WT, Wolfe B, Kirscher AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76:447–453

    CAS  PubMed  Google Scholar 

  • Song WO, Chun OK, Hwang I, Shin HS, Kim BG, Kim KS, Lee SY, Shin D, Lee SG (2007) Soy isoflavones as safe functional ingredients. J Med Food 10:571–580

    CAS  PubMed  Google Scholar 

  • Syed DN, Khan N, Afaq F, Mukhtar H (2007) Chemoprevention of prostate cancer through dietary agents: progress and promise. Cancer Epidemiol Biomarkers Prev 16:2193–2203

    CAS  PubMed  Google Scholar 

  • Tamura M, Tsushida T, Shinohara K (2007) Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe 13:32–35

    CAS  PubMed  Google Scholar 

  • Tannock GV (2002) Probiotics and prebiotics. Where are we going? Caister Academic, Norfolk, UK

    Google Scholar 

  • Tsangalis D, Ashton JF, McGill AEJ, Shah NP (2002) Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase-producing bifidobacteria. J Food Sci 67:3104–3113

    CAS  Google Scholar 

  • Tsangalis D, Wilcox G, Shah NP, Stojanovska L (2005) Bioavailability of isoflavone phytoestrogens in postmenopausal women consuming soya milk fermented with probiotic bifidobacteria. Br J Nutr 93:867–877

    CAS  PubMed  Google Scholar 

  • Tsangalis D, Wilcox G, Shah NP, McGill AE, Stojanovska L (2007) Urinary excretion of equol by postmenopausal women consuming soymilk fermented by probiotic bifidobacteria. Eur J Clin Nutr 61:438–441

    CAS  PubMed  Google Scholar 

  • Turner JV, Agatonovic-Kustrin S, Glass BD (2007) Molecular aspects of phytoestrogen selective binding at estrogen receptors. J Pharm Sci 96:1879–1885

    CAS  PubMed  Google Scholar 

  • Wang H, Murphy PA (1994) Isoflavone content in commercial soybean foods. J Agric Food Chem 42:1666–1673

    CAS  Google Scholar 

  • Wang XL, Hur HG, Lee JH, Kim KT, Kim SI (2005) Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71:214–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Kim HJ, Kang SI, Kim SI, Hur HG (2007) Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch Microbiol 187:155–160

    CAS  PubMed  Google Scholar 

  • Wei QK, Chen TR, Chen JT (2007) Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Intl J Food Microbiol 117:120–124

    CAS  Google Scholar 

  • Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA (2006) Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr 136:1270–1275

    CAS  PubMed  Google Scholar 

  • Yu ZT, Yao W, Zhu WY (2008) Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett 282:73–80

    CAS  PubMed  Google Scholar 

  • Yuan JP, Wang JH, Liu X (2007) Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health. Mol Nutr Food Res 51:765–781

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was partially supported by a grant from Anidral/Probiotical Ltd, Novara, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maddalena Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raimondi, S., Roncaglia, L., De Lucia, M. et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol 81, 943–950 (2009). https://doi.org/10.1007/s00253-008-1719-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1719-4

Keywords

Navigation