Skip to main content

Advertisement

Log in

Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dieldrin and endrin are persistent organic pollutants that cause serious environmental problems. Although these compounds have been prohibited over the past decades in most countries around the world, they are still routinely found in the environment, especially in the soil in agricultural fields. Bioremediation, including phytoremediation and rhizoremediation, is expected to be a useful cleanup method for this soil contamination. This review provides an overview of the environmental contamination by dieldrin and endrin, along with a summary of our current understanding and recent advances in bioremediation and phytoremediation of these pollutants. In particular, this review focuses on the types and abilities of plants and microorganisms available for accumulating and degrading dieldrin and endrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adeyeye A, Osibanjo O (1999) Residues of organochlorine pesticides in fruits, vegetables and tubers from Nigerian markets. Sci Total Environ 231:227–233

    CAS  PubMed  Google Scholar 

  • Ahn JH, Kim MS, Kim MC, Lim JS, Lee GT, Yun JK, Kim T, Kim T, Ka JO (2006) Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J Microbiol Biotechnol 16:704–715

    CAS  Google Scholar 

  • Anderson JPE, Lichtenstein EP, Whittingham WF (1970) Effect on Mucor alternans on the persistence of DDT and dieldrin in culture and in soil. J Econ Entomol 63:1595–1599

    CAS  PubMed  Google Scholar 

  • Baba D, Yasuta T, Yoshida N, Kimura Y, Miyake K, Inoue Y, Toyota K, Katayama A (2007) Anaerobic biodegradation of polychlorinated biphenyls by a microbial consortium originated from uncontaminated paddy soil. World J Microbiol Biotechnol 23:1627–1636

    CAS  Google Scholar 

  • Baczynski TP, Grotenhuis T, Knipscheer P (2004) The dechlorination of cyclodiene pesticides by methanogenic granular sludge. Chemosphere 55:653–659

    CAS  PubMed  Google Scholar 

  • Battersby NS, Wilson V (1989) Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl Environ Microbiol 55:433–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford CT, Huston DH, Natoff IL (1975) The acute toxicity of endrin and its metabolites of rates. Toxicol Appl Pharmacol 33:114–121

    Google Scholar 

  • Bixby MW, Boush GM, Matsumura F (1971) Degradation of dieldrin to carbon dioxide by a soil fungus Trichoderma koningi. Bull Environ Contam Toxicol 6:491–494

    CAS  PubMed  Google Scholar 

  • Campanella B, Paul R (2000) Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int J Phytoremediation 2:145–158

    CAS  Google Scholar 

  • Campbell S, Arakaki AS, Li QL (2009) Phytoremediation of heptachlor and heptachlor epoxide in soil by Cucurbitaceae. Int J Phytoremediation 11:28–38

    CAS  Google Scholar 

  • Chiu TC, Yen JH, Hsieh YN, Wang YS (2005) Reductive transformation of dieldrin under anaerobic sediment culture. Chemosphere 60:1182–1189

    CAS  PubMed  Google Scholar 

  • Collins C, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40:45–52

    CAS  PubMed  Google Scholar 

  • Donoso J, Dorigan J, Fuller B, Gordon J, Kornreich M, Saari S, Thomas L, Walker P (1979) Reviews of the environmental effects of pollutants XIII Endrin. Oak Ridge National Laboratory, Oak Ridge (EPA-600/1-79-005)

    Google Scholar 

  • Ecker S, Horak O (1994) Pathways of HCB-contamination to oil pumpkin seeds. Chemosphere 29:2135–2145

    CAS  Google Scholar 

  • Fantroussi SE, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CAS  PubMed  Google Scholar 

  • Gao HJ, Jiang X, Wang F, Wang DZ, Bian YR (2005) Residual levels and bioaccumulation of chlorinated persistent organic pollutants (POPs) in vegetables from suburb of Nanjing, People’s Republic of China. Bull Environ Contam Toxixol 74:673–680

    CAS  Google Scholar 

  • Georgacakis E, Khan MAQ (1971) Toxicity of the photoisomers of cyclodiene insecticides to freshwater animals. Nature 233:120–121

    CAS  PubMed  Google Scholar 

  • Goldstein RM, Mallory LM, Alexander M (1985) Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:977–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves C, Alpendurada MF (2005) Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry. Talanta 65:1179–1189

    PubMed  Google Scholar 

  • Harner T, Wideman JL, Jantunen LMM, Bidleman TF, Parkhurst WJ (1999) Residues of organochlorine pesticides in Alabama soils. Environ Pollut 106:323–332

    CAS  PubMed  Google Scholar 

  • Hashimoto Y (2005) Dieldrin residue in the soil and cucumber from agricultural field in Tokyo. J Pestic Sci 30:397–402

    CAS  Google Scholar 

  • Hilber I, Mäder P, Schulin R, Wyss GS (2008) Survey of organochlorine pesticides in horticultural soils and there grown Cucurbitaceae. Chemosphere 73:954–961

    CAS  PubMed  Google Scholar 

  • Hiraishi A (2003) Biodiversity of dioxin-degrading microorganisms and potential utilization in bioremediation. Microbes Environ 18:105–125

    Google Scholar 

  • Hong SH, Yim UH, Shim WJ, Li DH, Oh JR (2006) Nationwide monitoring of polychlorinated biphenyls and organochlorine pesticides in sediments from coastal environment of Korea. Chemosphere 64:1479–1488

    CAS  PubMed  Google Scholar 

  • Hugenholtz P, MacRae IC (1990) Stimulation of aldrin and dieldrin loss from soils treated with carbon amendments and saturated-ring analogues. Bull Environ Contam Toxicol 45:223–227

    CAS  PubMed  Google Scholar 

  • Hülster A, Muller JF, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Google Scholar 

  • Hung DQ, Thiemann W (2002) Contamination by selected chlorinated pesticides in surface waters in Hanoi, Vietnam. Chemosphere 47:357–367

    CAS  PubMed  Google Scholar 

  • Inui H, Wakai T, Gion K, Kim YS, Eun H (2008) Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere 73:1602–1607

    CAS  PubMed  Google Scholar 

  • IPCS (1998) International Chemical Safety Card—Dieldrin. World Health Organization/International Programme on Chemical Safety, Geneva (ICSC 0787)

    Google Scholar 

  • IPCS (2000) International Chemical Safety Card—Endrin. World Health Organization/International Programme on Chemical Safety, Geneva (ICSC 1023)

    Google Scholar 

  • Jiries AG, Al Nasir FM, Beese F (2002) Pesticide and heavy metals residue in wastewater, soil and plants in wastewater disposal site near Al-Lajoun Valley, Karak/Jordan. Water Air Soil Pollut 133:97–107

    CAS  Google Scholar 

  • Johgenson JE (2001) Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect 109:113–139

    Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    CAS  Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56:2347–2353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SU (1980) Pesticides in the soil environment. Elsevier, Amsterdam

    Google Scholar 

  • Konzdroj J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Google Scholar 

  • Lal R, Saxena DM (1982) Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiol Rev 46:95–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lalah JO, Yugi PO, Jumba IO, Wandiga SO (2003) Organochlorine pesticide residues in Tana and Sabaki Rivers in Kenya. Bull Environ Contam Toxicol 71:298–307

    CAS  PubMed  Google Scholar 

  • Lichtenstein EP, Schulz KR, Skrentny RF, Stitt PA (1965) Insecticidal residues in cucumbers and alfalfa grown on aldrin- or heptachlor-treated soils. J Econ Entomol 58:742–746

    CAS  Google Scholar 

  • Lunney AI, Zeeb BA, Reimer KJ (2004) Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol 38:6147–6154

    CAS  PubMed  Google Scholar 

  • Macedo AJ, Timmis KN, Abraham WR (2007) Widespread capacity to metabolize polychlorinated biphenyls by diverse microbial communities in soils with no significant exposure to PCB contamination. Environ Microbiol 9:1890–1897

    CAS  PubMed  Google Scholar 

  • Macek T, Mackova M, Kucerova P, Chroma L, Burkhard J, Demnerova K (2002) Phytoremediation. In: Agathos SN, Reineke W (eds) Biotechnology for the environment: soil remediation. Kluwer, London, pp 115–137

    Google Scholar 

  • Malik A, Ojha P, Singh KP (2009) Levels and distribution of persistent organochlorine pesticide residues in water and sediments of Gomti River (India)—a tributary of the Ganges River. Environ Monit Assess 148:421–435

    CAS  PubMed  Google Scholar 

  • Manirakiza P, Akinbamijo O, Covaci A, Pitonzo R, Schepens P (2003) Assessment of organochlorine pesticide residues in west African city farms: Banjul and Dakar case study. Arch Environ Contam Toxicol 44:171–179

    CAS  PubMed  Google Scholar 

  • Matin MA, Malek MA, Amin MR, Rahman S, Khatoon J, Rahman M, Aminuddin M, Mian AJ (1998) Organochlorine insecticide residues in surface and underground water from different regions of Bangladesh. Agric Ecosyst Environ 69:11–15

    CAS  Google Scholar 

  • Matsumoto E, Kawanaka Y, Yun SJ, Oyaizu H (2008) Isolation of dieldrin- and endrin-degrading bacteria using 1, 2-epoxycyclohexane as a structural analog of both compounds. Appl Microbiol Biotechnol 80:1095–1103

    CAS  PubMed  Google Scholar 

  • Matsumura F, Boush GM (1967) Dieldrin: degradation by soil microorganisms. Science 156:959–961

    CAS  PubMed  Google Scholar 

  • Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus, Trichoderma viride. J Econ Entomol 61:610–612

    CAS  PubMed  Google Scholar 

  • Matsumura F, Patil KC, Boush GM (1970) Formation of “photodieldrin” by microorganisms. Science 170:1206–1207

    CAS  PubMed  Google Scholar 

  • Matsumura F, Khanvilkar VG, Patil KC, Boush GM (1971) Metabolism of endrin by certain soil microorganisms. J Agric Food Chem 19:27–31

    CAS  PubMed  Google Scholar 

  • Mattina MJI, Iannucci-Berger W, Dykas L (2000) Chlordane uptake and its translocation in food crops. J Agric Food Chem 48:1909–1915

    CAS  PubMed  Google Scholar 

  • Mattina MJI, Eitzer BD, Iannucci-Berger W, Lee WY, White JC (2004) Plant uptake and translocation of highly weathered, soil-bound technical chlordane residues: data from field and rhizotron studies. Environ Toxicol Chem 23:2756–2762

    CAS  PubMed  Google Scholar 

  • Mattina MJI, Berger WA, Eitzer BD (2007) Factors affecting the phytoaccumulation of weathered, soil-borne organic contaminants: analyses at the ex Planta and in Planta sides of the plant root. Plant Soil 291:143–154

    CAS  Google Scholar 

  • Maule A, Plyte S, Quirk AV (1987) Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. Pestic Biochem Physiol 27:229–236

    CAS  Google Scholar 

  • Mawussi G, Sanda K, Merlina G, Pinelli E (2009) Assessment of average exposure to organochlorine pesticides in southern Togo from water, maize (Zea mays) and cowpea (Vigna unguiculata). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:348–354

    CAS  PubMed  Google Scholar 

  • McDougall KW, Harris CR, Fenton IG, Dowman A (1995) Persistence and effect of management practices on organochlorine residues in soils of sub-tropical New South Wales. Bull Environ Contam Toxicol 54:177–184

    CAS  PubMed  Google Scholar 

  • Meijer SN, Halsall CJ, Harner T, Peters AJ, Ockenden WA, Johnston AE, Jones KC (2001) Organochlorine pesticide residues in archived UK soil. Environ Sci Technol 35:1989–1995

    CAS  PubMed  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otani T, Seike N (2006) Comparable effects of rootstock and scion on dieldrin and endrin uptake by grafted cucumber (Cucumis sativus). J Pestic Sci 31:316–321

    CAS  Google Scholar 

  • Otani T, Seike N (2007) Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucurmis sativus). J Pestic Sci 32:235–242

    CAS  Google Scholar 

  • Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr 53:86–94

    CAS  Google Scholar 

  • Otsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategy for bioremediation of polychlorinated biphenyl. Appl Microbiol Biotechnol 65:250–258

    Google Scholar 

  • Ozkoc HB, Bakan G, Ariman S (2007) Distribution and bioaccumulation of organochlorine pesticides along the Black Sea coast. Environ Geochem Health 29:59–68

    CAS  PubMed  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl Microbiol 19:879–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  PubMed  Google Scholar 

  • Richardson PT, Baker DA, Ho LC (1982) The chemical composition of cucurbit vascular exudates. J Exp Bot 33:1239–1247

    CAS  Google Scholar 

  • Shegunova P, Klánová J, Holoubek I (2007) Residues of organochlorinated pesticides in soils from the Czech Republic. Environ Pollut 146:257–261

    CAS  PubMed  Google Scholar 

  • Siddarame Gowda TK, Sethunathan N (1977) Endrin decomposition in soils as influenced by aerobic and anaerobic conditions. Soil Sci 124:5–9

    Google Scholar 

  • Singh RP (2001) Comparison of organochlorine pesticide levels in soil and groundwater of Agra, India. Bull Environ Contam Toxicol 67:126–132

    CAS  PubMed  Google Scholar 

  • Singh SK, Raha P, Banerjee H (2006) Banned organochlorine cyclodiene pesticide in ground water in Varanasi, India. Bull Environ Contam Toxicol 76:935–941

    CAS  PubMed  Google Scholar 

  • Škrbić B (2007) Organochlorine and organophosphate pesticide residues in wheat varieties from Serbia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 24:695–703

    Google Scholar 

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316

    CAS  PubMed  Google Scholar 

  • Wan MT, Kuo J, Pasternak J (2005) Residues of endosulfan and other selected organochlorine pesticides in farm areas of the lower Fraser valley, British Columbia, Canada. J Environ Qual 34:1186–1193

    CAS  PubMed  Google Scholar 

  • Wang F, Jiang X, Bian Y, Yao F, Gao H, Yu G, Munch JC, Schroll R (2007a) Organochlorine pesticides in soils under different land usage in the Taihu lake region, China. J Environ Sci 19:584–590

    CAS  Google Scholar 

  • Wang H, He M, Lin C, Quan X, Guo W, Yang Z (2007b) Monitoring and assessment of persistent organochlorine residues in sediments from the Daliaohe river watershed, northeast of China. Environ Monit Assess 133:231–242

    CAS  PubMed  Google Scholar 

  • Watanabe K, Yoshikawa H (2008) Enrichment and isolation of anaerobic microorganisms concerned with reductive degradation of hexachlorobenzene from soils. J Pestic Sci 33:166–170

    CAS  Google Scholar 

  • Watanabe K, Yoshikawa H, Goto M, Furukara K (2007) Enrichment and isolation of novel anaerobic microorganisms capable of degrading various kinds of POPs. Organohalogen Compounds 69:2500–2503

    Google Scholar 

  • Wedemeyer G (1968) Partial hydrolysis of dieldrin by Aerobacter aerogenes. Appl Microbiol 16:661–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JC (2001) Plant-facilitated mobilization and translocation of weathered 2, 2-bis(p-chlorophenyl)-1, 1-dichloroethylene (p, p’-DDE) from an agricultural soil. Environ Toxicol Chem 20:2047–2052

    CAS  PubMed  Google Scholar 

  • White JC, Wang X, Gent MPN, Iannucci-Berger W, Eitzer BD, Schultes NP, Arienzo M, Mattina MI (2003a) Subspecies-level variation in the phytoextraction of weathered p, p’-DDE by Cucurbita pepo. Environ Sci Technol 37:4367–4373

    Google Scholar 

  • White JC, Mattina MI, Lee WY, Eitzer BD, Iannucci-Berger W (2003b) Role of organic acids in enhancing the desorption and uptake of weathered p, p’-DDE by Cucurbita pepo. Environ Pollut 124:71–80

    CAS  PubMed  Google Scholar 

  • White JC, Parrish ZD, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. International Journal of Phytoremediation 8:63–79

    CAS  PubMed  Google Scholar 

  • WHO/IPCS (1989) Aldrin and Dieldrin, Environmental Health Criteria 91. WHO/IPCS, Geneva

    Google Scholar 

  • WHO/IPCS (1992) Endrin—Environmental Health Criteria 130. WHO/IPCS, Geneva

    Google Scholar 

  • Zhang Z, Hong H, Zhou JL, Yu G, Chen W, Wang X (2002) Transport and fate of organochlorine pesticides in the River Wuchuan, Southeast China. J Environ Monit 4:435–441

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiko Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, E., Kawanaka, Y., Yun, SJ. et al. Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol 84, 205–216 (2009). https://doi.org/10.1007/s00253-009-2094-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2094-5

Keywords

Navigation