Skip to main content

Advertisement

Log in

Characterization and analysis of the regulatory network involved in control of lipomycin biosynthesis in Streptomyces aureofaciens Tü117

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Analysis of the α-lipomycin biosynthesis gene cluster of Streptomyces aureofaciens Tü117 led to the identification of five putative regulatory genes, which are congregated into a subcluster. Analysis of the lipReg1–4 and lipX1 showed that they encode components of two-component signal transduction systems (LipReg1 and LipReg2), multiple antibiotics resistance-type regulator (LipReg3), large ATP-binding regulators of the LuxR family-type regulator (LipReg4), and small ribonuclease (LipRegX1), respectively. A combination of targeted gene disruptions, complementation experiments, lipomycin production studies, and gene expression analysis via RT-PCR suggests that all regulatory lip genes are involved in α-lipomycin production. On the basis of the obtained data, we propose that LipReg2 controls the activity of LipReg1, which in its turn govern the expression of the α-lipomycin pathway-specific regulatory gene lipReg4. The ribonuclease gene lipX1 and the transporter regulator lipReg3 appear to work independently of genes lipReg1, lipReg2, and lipReg4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aigle B, Pang X, Decaris B, Leblond P (2005) Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. J Bacteriol 187:2491–2500

    Article  CAS  Google Scholar 

  • Alekshun M, Levy S, Mealy T, Seaton B, Head J (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2, 3 A resolution. Nat Struct Biol 8:710–714

    Article  CAS  Google Scholar 

  • Bate N, Stratigopoulos G, Cundliffe E (2002) Differential roles of two SARP-encoding regulatory gene during tylosin biosynthesis. Mol Microbiol 43:449–458

    Article  CAS  Google Scholar 

  • Bate N, Bignell DRD, Cundliffe E (2006) Regulation of tylosin biosynthesis involving ‘SARP- helper’ activity. Mol Microbiol 62:148–156

    Article  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brein K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  Google Scholar 

  • Bihlmaier C, Welle E, Hofmann C, Welzel K, Vente A, Breitling E, Muller M, Glaser S, Bechthold A (2006) Biosynthesis of the acyclic polyene antibiotic lipomycin in Streptomyces aureofaciens Tü117. Antimicrob Agents Chemother 50:2113–2121

    Article  CAS  Google Scholar 

  • Blondelet-Rouault M-H, Weiser Y, Lebrihi A, Branny P, Pernodet J (1997) Antibiotic resistance gene cassettes derived from the U` interposon for use in Escherichia coli and Streptomyces. Gene 190:315–317

    Article  CAS  Google Scholar 

  • Bolard J (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864:257–304

    CAS  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Microbiol Mol Biol Rev 62:204–229

    CAS  Google Scholar 

  • Chen Y, Wendt-Pienkowski E, Shen B (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596

    Article  CAS  Google Scholar 

  • Dylan C, Jensen A (1998) Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180:4068–4079

    Google Scholar 

  • Esser V, Elefson D (1970) Experiences with the Kirby–Bauer method of antibiotic susceptibility testing. Am J Clin Pathol 54:193–198

    CAS  Google Scholar 

  • Fernandez-Moreno M, Caballero J, Hopwood D, Malpartida F (1991) The act-cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bld-tRNA gene of Streptomyces. Cell 66:769–780

    Article  CAS  Google Scholar 

  • Flett F, Mersinias V, Smith C (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting Streptomyces. FEMS Microbiol Lett 155:223–229

    Article  CAS  Google Scholar 

  • Folcher M, Gaillard H, Nguyen L, Nguyen K, Lacroix K, Bamas-Jacques N, Rinkel M, Ch T (2001) Pleiotropic function of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306

    Article  CAS  Google Scholar 

  • Gravenbeek M, Jones G (2008) The endonuclease activity of RNase III is required for the regulation of antibiotic production by Streptomyces coelicolor. Microbiology 154:3547–3555

    Article  CAS  Google Scholar 

  • Grkovich S, Brown M, Skurray R (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701

    Article  Google Scholar 

  • Gust B, Kieser T, Chater K (2002) PCR targeting system in Streptomyces coelicolor A3(2). The John Innes Foundation, Norwich

    Google Scholar 

  • Guzmann LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    Google Scholar 

  • Hopwood D (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940

    Article  CAS  Google Scholar 

  • Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyce. Biosci Biotechnol Biochem 71:283–299

    Article  CAS  Google Scholar 

  • Hutchings M, Hoskisson P, Chandra G, Buttner M (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinase and response regulators of Streptomyces coelicolor A3(2). Microbiol 150:2795–2806

    Article  CAS  Google Scholar 

  • Kennel D (2002) Processing endoribonucleases and mRNA degradation in bacteria. J Bacteriol 184:4645–4657

    Article  Google Scholar 

  • Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Köseoglu O, Kocagöz T (2004) A novel T-cloning vector system. Mikrobiyol Bul 38:239–243

    Google Scholar 

  • Lee P, Umeyma T, Horinouchi S (2002) AfsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 43:413–1430

    Google Scholar 

  • Luzhetskyy A, Fedoryshyn M, Gromyko O, Ostash B, Rebets Y, Bechthold A, Fedorenko V (2006) IncP plasmids are most effective in mediating conjugation between Escherichia coli and Streptomyces. Genetica 42:595–601

    CAS  Google Scholar 

  • McKenzie N, Nodwell J (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    Article  CAS  Google Scholar 

  • Nuria A, Mendes M, Martin J, Aparacio J (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    Article  Google Scholar 

  • Nuria A, Santos-Aberturas J, Mendes M, Guerra S, Martin J, Aparacio J (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 153:3174–3183

    Google Scholar 

  • Otten S, Ferguson J, Hutchinson R (1995) Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177:1216–1224

    CAS  Google Scholar 

  • Pang X, Aigle B, Girardet M, Mangenot S, Pernodet L, Decaris B, Leblond P (2004) Functional angucyclin like antibiotic gene cluster in the terminal inverted repeats of Streptomyces ambofaciens liner chromosome. Antimicrob Agents Chemother 48:575–588

    Article  CAS  Google Scholar 

  • Price B, Adamidis T, Kong R, Champness W (1999) A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J Bacteriol 181:6142–6151

    CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Saridakis V, Shahinas D, Christendat D (2008) Structural insights on the mechanism of regulation of the MarR family of proteins: high resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum. J Mol Biol 377:655–667

    Article  CAS  Google Scholar 

  • Sello J, Buttner M (2008) The gene encoding RNase III in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and for proper sporulation. J Bacteriol 190:4079–4083

    Article  CAS  Google Scholar 

  • Sevcik J, Urbanikova L, Leland P, Raines R (2002) X-ray structure of two crystalline forms of a Streptomyces ribonuclease with cytotoxic activity. J Biol Chem 277:47325–47330

    Article  CAS  Google Scholar 

  • Sevcik J, Dauter Z, Wilson K (2004) Crystal structure reveals two alternative conformations in the active site of ribonuclease Sa2. Acta Crystallogr D Biol Crystallogr D60:1198–1204

    Article  CAS  Google Scholar 

  • Sheldon P, Busarow S, Hutchinson R (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  CAS  Google Scholar 

  • Tahlan K, Ahn S, Sing A, Bodnaruk T, Willems A, Davidson A, Nodwell J (2007) Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63:951–961

    Article  CAS  Google Scholar 

  • Wilson D, Xue Y, Reynolds K, Sherman D (2001) Characterization and analysis of the PikD regulatory factor in the picromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183:3468–3475

    Article  CAS  Google Scholar 

  • Zhang Y, Muyrers JP, Rientjes J, Stewart AF (2003) Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Biol 4:1

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the BMBF (genomic plus) grant to A.B and by the DAAD grant to L.H. (PKZ A/07/99406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bechthold.

Additional information

Liliya Horbal and Yuriy Rebets equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horbal, L., Rebets, Y., Rabyk, M. et al. Characterization and analysis of the regulatory network involved in control of lipomycin biosynthesis in Streptomyces aureofaciens Tü117. Appl Microbiol Biotechnol 85, 1069–1079 (2010). https://doi.org/10.1007/s00253-009-2108-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2108-3

Keywords

Navigation