Skip to main content
Log in

Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to develop a clean and effective approach for producing the valuable drug diosgenin from Dioscorea zingiberensis tubers, two successive processes, enzymatic saccharification and microbial transformation, were used. With enzymatic saccharification, 98.0% of starch was excluded from the raw herb, releasing saponins from the network structure of starch. Subsequently, the treated tubers were fermented with Trichoderma reesei under optimal conditions for 156 h. During microbial transformation, glycosidic bonds, which link β-d-glucose or α-l-rhamnose with aglycone at the C-3 position in saponins, were broken down effectively to give a diosgenin yield of 90.6 ± 2.45%, 42.4% higher than that obtained from bioconversion of raw tubers directly. Scaled up fermentation was conducted in a 5.0-l bioreactor and gave a diosgenin yield of 91.2 ± 3.21%. This is the first report on the preparation of diosgenin from herbs through microbial transformation as well as utilizing other available components in the raw material, providing an environmentally friendly alternative to diosgenin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The fermentation medium components and condition parameters in this study were optimized for high diosgenin yield and will be reported later.

References

  • Adham NZ, Zaki RA, Naim N (2009) Microbial transformation of diosgenin and its precursor furostanol glycosides. World J Microbiol Biotechnol 25:481–487

    Article  CAS  Google Scholar 

  • Bae EA, Kim NY, Han MJ, Choo MK, Kim DH (2003) Transformation of ginsenoside to compound K (IH-901) by lactic acid bacteria of human intestine. J Microbiol Biotechnol 13:9–14

    CAS  Google Scholar 

  • Bertranda J, Liagreb B, Bégaud-Grimaudc G, Jauberteaua MO, Beneytoutb JL, Cardot PJP, Battuc S (2009) Analysis of relationship between cell cycle stage and apoptosis induction in K562 cells by sedimentation field-flow fractionation. J Chromatogr B 877:1155–1161

    Article  Google Scholar 

  • Cao YF (2004) Studies on the morphogenesis and the development of the structure of rhizome of Dioscorea zingiberensis and their relationship with the accumulation of diosgenin. Northwest University, Xi’an (in Chinese)

    Google Scholar 

  • Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 77:1345–1350

    Article  CAS  Google Scholar 

  • Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC (2008) Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69:218–224

    Article  CAS  Google Scholar 

  • Cheng P, Zhao HZ, Zhao B, Ni JR (2009) Pilot treatment of wastewater from Dioscorea zingiberensis C.H. Wright production by anaerobic digestion combined with a biological aerated filter. Bioresour Technol 12:2918–2925

    Article  Google Scholar 

  • Chiang CT, Way TD, Tsai SJ, Lin JK (2007) Diosgenin, a naturally occurring steroid, suppresses fatty acid synthesis expression in HER2-over expressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett 581:5735–5742

    Article  CAS  Google Scholar 

  • Feng B, Ma BP, Kang LP, Xiong CQ, Wang SQ (2005) The microbiological transformation of steroidal saponins by Curvularia lunata. Tetrahedron 61:11758–11763

    Article  CAS  Google Scholar 

  • Feng B, Hu W, Ma BP, Wang YZ, Huang HZ, Wang SQ, Qian XH (2007) Purification, characterization and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Appl Microbiol Biotechnol 76:1329–1338

    Article  CAS  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Hasegawa H, Sung JH, Matsumiya S, Uchiyama M (1996) Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 62:453–457

    Article  CAS  Google Scholar 

  • Hasegawa H, Sung JH, Benno Y (1997) Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 63:436–440

    Article  CAS  Google Scholar 

  • He XJ, Qiao A, Liu B, Wang XL, Wang GH, Qu GX, Liu RH, Yao XS (2006) Bioconversion of methyl protodioscin by Penicillium melinii cells. Enzyme Microb Technol 38:400–406

    Article  CAS  Google Scholar 

  • Huang W, Zhao HZ, Ni JR, Zuo H, Qiu LL, Li H (2008) The best utilization of D. zingiberensis C. H. Wright by an eco-friendly process. Bioresour Technol l99:7407–7411

    Article  Google Scholar 

  • Jayachandran KS, Vasanthi HR, Rajamanickam GV (2009) Antilipoperoxidative and membrane stabilizing effect of diosgenin, in experimentally induced myocardial infarction. Mol Cell Biochem 327:203–210

    Article  CAS  Google Scholar 

  • Jayadev R, Ranjana PB (2007) Diosgenin, a naturally occurring furostanol saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells. Cancer Lett 255:194–204

    Article  Google Scholar 

  • Liagre B, Vergne-Salle P, Corbiere C, Charissoux JL, Beneytout JL (2004) Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression. Arthritis Res Ther 6:R373–R383

    Article  CAS  Google Scholar 

  • Liu L, Dong YS, Qi SS, Wang H, Xiu ZL (2009) Biotransformation of steroidal saponins in Dioscorea zingiberensis C. H. Wright to diosgenin by Trichoderma harzianum. Appl Microbiol Biotechnol. doi:10.1007/s00253-00902098-1

  • Oncina R, Botía JM, Del Río JA, Ortuño A (2000) Bioproduction of diosgenin in callus cultures of Trigonella foenum-graecum L. Food Chem 70:489–492

    Article  CAS  Google Scholar 

  • Qi SS, Dong YS, Zhao YK, Xiu ZL (2009) Qualitative and quantitative analysis of microbial transformation of steroidal saponins in Dioscorea zingiberensis. Chromatographia 69:865–870

    Article  CAS  Google Scholar 

  • Qian SH, Yuan LH, Yang NY, OuYang PK (2006) Study on steroidal compounds from Dioscorea zingiberensis. Chinese Traditional Herbal Drugs 29:1174–1176 (in Chinese)

    CAS  Google Scholar 

  • Saunders R, Cheetham PSJ, Hardman R (1986) Microbial transformation of crude fenugreek steroids. Enzyme Microb Technol 8:549–555

    Article  CAS  Google Scholar 

  • Trouillas P, Corbiere C, Liagre B, Duroux JL, Beneytout JL (2005) Structure–function relationship for saponin effects on cell cycle arrest and apoptosis in the human 1547 osteosarcoma cells: a molecular modeling approach of natural molecules structurally close to diosgenin. Bioorg Med Chem Lett 13:1141–1149

    Article  CAS  Google Scholar 

  • Wang FQ, Li B, Wang W, Zhang CG, Wei DZ (2007a) Biotransformation of diosgenin to nuatigenin-type steroid by a newly isolated strain, Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol 77:771–777

    Article  CAS  Google Scholar 

  • Wang H, Liu L, Guo YX, Dong YS, Zhang DJ, Xiu ZL (2007b) Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae. Appl Microbiol Biotechnol 75:763–768

    Article  CAS  Google Scholar 

  • Wang YX, Liu H, Bao JG, Hong Y, Yang ZH, Zhang CX (2008) The saccharification-membrane retrieval-hydrolysis (SMRH) process: a novel approach for cleaner production of diosgenin derived from Dioscorea zingiberensis. J Cleaner Prod 16:1133–1137

    Article  Google Scholar 

  • Yayoi T, Naoko K, Akinori H, Megumi T, Hideyo U, Shinichi W (2009) Novel effects of diosgenin on skin aging. Steroids 74:504–511

    Article  Google Scholar 

  • Zhao YT, Xu ZL, Dai CC, Tang XL, Xia B, Wang Q (2007) Selection of the microorganism for dioscin hydrolyze. Journal of Chinese Medical Material 30:905–909 (in Chinese)

    CAS  Google Scholar 

  • Zhao HZ, Cheng P, Zhao B, Ni JR (2008) Yellow ginger processing wastewater treatment by a hybrid biological process. Process Biochem 43:1427–1431

    Article  CAS  Google Scholar 

  • Zhang CX, Wang YX, Yang ZH, Xu MH (2006) Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Dioscorea zingiberensis. Fuel 85:2034–2040

    Article  CAS  Google Scholar 

  • Zhang Q, Lo CM, Ju LK (2007) Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresour Technol 98:753–760

    Article  CAS  Google Scholar 

  • Zhang YQ, Tang LR, An X, Fu EH, Ma CF (2009) Modification of cellulase and its application to extraction of diosgenin from Dioscorea zingiberensis C. H. Wright. Biochem Eng J. doi:10.1016/j.bej.2009.07.006

Download references

Acknowledgments

This work was supported by the National “11th-5-Year” Plan Project of China (2006BAB04A14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ren Ni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, YL., Huang, W., Ni, JR. et al. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation. Appl Microbiol Biotechnol 85, 1409–1416 (2010). https://doi.org/10.1007/s00253-009-2200-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2200-8

Keywords

Navigation