Skip to main content
Log in

Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corncob molasses, a waste by-product in xylitol production, contains high concentrations of mixed sugars. In the present study, corncob molasses was used to produce 2,3-butanediol (BD) using Klebsiella pneumoniae SDM. This was the first report on the use of corncob molasses to produce bulk chemicals. Our results indicated that K. pneumoniae SDM can utilize various sugars contained in the corncob molasses in a preferential manner: glucose > arabinose > xylose. It was shown that high sugars concentration had an inhibitory effect on the cells growth and BD production. The maximum concentration of BD was 78.9 g/l after 61 h of fed-batch fermentation, giving a BD productivity of 1.3 g/l h and a yield of 81.4%. The present study suggests that the low-cost corncob molasses could be used as an alternative substrate for the production of BD by K. pneumoniae SDM, as well as a potential carbon source for production of other high-value chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse-derived cellulose. Green Chem 9:58–62

    Article  CAS  Google Scholar 

  • Afschar AS, Bellgardt KH, Vaz Rossell CE, Czok A, Schaller K (1991) The production of 2, 3-butanediol by fermentation of high-test molasses. Appl Microbiol Biotechnol 34:582–585

    Article  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  • Cao NG, Xia YK, Gong CS, Tsao GT (1997) Production of 2, 3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulose. Appl Biochem Biotechnol 63–65:129–139

    Article  Google Scholar 

  • Celińska E, Grajek W (2009) Biotechnological production of 2, 3-butanediol—current state and prospects. Biotechnol Adv 27:715–725

    Article  Google Scholar 

  • Cheng KK, Liu Q, Zhang JA, Li JP, Xu JM, Wang GH (2010) Improved 2, 3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem. doi:10.1016/j.procbio.2009.12.009

    Google Scholar 

  • Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8:853–860

    Article  CAS  Google Scholar 

  • Fages J, Mulard D, Rouquet JJ, Wilhelm JL (1986) 2, 3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12321. Optimization of k L a profile. Appl Microbiol Biotechnol 25:197–202

    Article  CAS  Google Scholar 

  • Garg SK, Jain A (1995) Fermentative production of 2, 3-butanediol: a review. Bioresour Technol 51:103–109

    Article  CAS  Google Scholar 

  • Hu CM, Zhao X, Zhao J, Wu SG, Zhao ZBK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847

    Article  CAS  Google Scholar 

  • Jansen NB, Tsao GT (1983) Bioconversion of pentoses to 2, 3-butanediol by Klebsiella pneumoniae. Adv Biochem Eng Biotechnol 27:85–99

    CAS  Google Scholar 

  • Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S (2009a) Enhanced 2, 3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 100:3410–3414

    Article  CAS  Google Scholar 

  • Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S, Nie ZK (2009b) Development of an industrial medium for economical 2, 3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour Technol 100:5214–5218

    Article  CAS  Google Scholar 

  • Lee HK, Maddox IS (1984) Microbial production of 2, 3-butanediol from whey permeate. Biotechnol Lett 6:815–818

    Article  CAS  Google Scholar 

  • Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, Tang HZ, Xu P (2009) Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nishikawa NK, Sutcliffe R, Saddler JN (1988) The effect of wood-derived inhibitors on 2, 3-butanediol production by Klebsiella pneumoniae. Biotechnol Bioeng 31:624–627

    Article  CAS  Google Scholar 

  • Perego P, Converti A, Del Borghi A, Canepa P (2000) 2, 3-Butanediol production by Enterobacter aerogenes: selection of the optimal conditions and application to food industry residues. Bioprocess Eng 23:613–620

    Article  CAS  Google Scholar 

  • Qin JY, Xiao ZJ, Ma CQ, Xie NZ, Liu PH, Xu P (2006) Production of 2, 3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chin J Chem Eng 14:132–136

    Article  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1999) Production of 2, 3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321–326

    Article  CAS  Google Scholar 

  • Syu MJ (2001) Biological production of 2, 3-butanediol. Appl Microbiol Biotechnol 55:10–18

    Article  CAS  Google Scholar 

  • Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Article  CAS  Google Scholar 

  • Wu KJ, Saratale GD, Lo YC, Chen WM, Tseng ZJ, Chang MC, Tsai BC, Su A, Chang JS (2008) Simultaneous production of 2, 3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresour Technol 99:7966–7970

    Article  CAS  Google Scholar 

  • Xiao ZJ, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140

    Article  CAS  Google Scholar 

  • Xiao ZJ, Liu PH, Qin JY, Xu P (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74:61–68

    Article  CAS  Google Scholar 

  • Yu EKC, Saddler JN (1983) Fed-batch approach to production of 2, 3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol 46:630–635

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Program for High-Technology Research and Development (No. 2006AA02Z244), the Chinese National Natural Science Foundation (No. 30770064) and the National Basic Research Program of China (No. 2007CB707803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiqing Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Wang, Y., Jiang, T. et al. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87, 965–970 (2010). https://doi.org/10.1007/s00253-010-2557-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2557-8

Keywords

Navigation