Skip to main content
Log in

Cloning and characterization of a rhamnose isomerase from Bacillus halodurans

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Whole-genome sequence analysis of Bacillus halodurans ATCC BAA-125 revealed an isomerase gene (rhaA) encoding an l-rhamnose isomerase (l-RhI). The identified l -RhI gene was cloned from B. halodurans and over-expressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,257 bp capable of encoding a polypeptide of 418 amino acid residues with a molecular mass of 48,178 Da. The molecular mass of the purified enzyme was estimated to be ∼48 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 121 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 7 and 70°C, respectively, with a k cat of 8,971 min−1 and a k cat/K m of 17 min−1 mM−1 for l-rhamnose. Although l-RhIs have been characterized from several other sources, B. halodurans l-RhI is distinguished from other l-RhIs by its high temperature optimum (70°C) with high thermal stability of showing 100% activity for 10 h at 60°C. The half-life of the enzyme was more than 900 min and ∼25 min at 60°C and 70°C, respectively, making B. halodurans l-RhI a good choice for industrial applications. This work describes one of the most thermostable l-RhI characterized thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badia J, Gimenez R, Baldoma L, Barnes E, Fessner WD, Aguilar J (1991) l-Lyxose metabolism employs the l-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on l-lyxose. J Bacteriol 173:5144–5150

    CAS  Google Scholar 

  • Barlow DJ, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168:867–885

    Article  CAS  Google Scholar 

  • Bautista DA, Pegg RB, Shand PJ (2000) Effect of l-glucose and d-tagatose on bacterial growth in media and a cooked cured ham product. J Food Prot 63:71–77

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cai G, Zhu S, Yang S, Zhao G, Jiang W (2004) Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans: probing the molecular basis for its high thermostability. Appl Environ Microbiol 70:2764–2770

    Article  CAS  Google Scholar 

  • Chakravarty S, Varadarajan R (2000) Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett 470:65–69

    Article  CAS  Google Scholar 

  • Costantini S, Colonna G, Facchiano AM (2008) ESBRI: a web server for evaluating salt bridges in proteins. Bioinformation 3:137–138

    Google Scholar 

  • Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J Mol Biol 301:1041–1057

    Article  CAS  Google Scholar 

  • Dische Z, Borenfreund E (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 192:583–587

    CAS  Google Scholar 

  • Dragan AI, Potekhin SA, Sivolob A, Lu M, Privalov PL (2004) Kinetics and thermodynamics of the unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56. Biochemistry 43:14891–14900

    Article  CAS  Google Scholar 

  • Fersht AR (1972) Conformational equilibria and the salt bridge in chymotrypsin. Cold Spring Harb Symp Quant Biol 36:71–73

    CAS  Google Scholar 

  • Fu Y, Ding Y, Chen Z, Sun J, Fang W, Xu W (2010) Study on the relationship between cyclodextrin glycosyltransferase’s thermostability and salt bridge by molecular dynamics simulation. Protein Pept Lett (in press)

  • Gottschalk G (1986) Bacterial metabolism. Springer, New York, pp 79–81

    Google Scholar 

  • Izumori K (2002) Bioproduction strategies for rare hexose sugars. Naturwissenschaften 89:120–124

    Article  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) How good are predictions of protein secondary structure? FEBS Lett 155:179–82

    Article  CAS  Google Scholar 

  • Karshikoff A, Ladenstein R (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: a “traffic rule” for hot roads. Trends Biochem Sci 26:550–55

    Article  CAS  Google Scholar 

  • Korndorfer IP, Fessner WD, Matthews BW (2000) The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J Mol Biol 300:917–933

    Article  CAS  Google Scholar 

  • Kumar S, Nussinov R (1999) Salt bridge stability in monomeric proteins. J Mol Biol 293:1241–1255

    Article  CAS  Google Scholar 

  • Kumar S, Nussinov R (2004) Different roles of electrostatics in heat and in cold: adaptation by citrate synthase. Chembiochem 5:280–290

    Article  CAS  Google Scholar 

  • Lawson CJ, Homewood J, Taylor AJ (2002) The effects of l-glucose on memory in mice are modulated by peripherally acting cholinergic drugs. Neurobiol Learn Mem 77:17–28

    Article  CAS  Google Scholar 

  • Leang K, Takada G, Ishimura A, Okita M, Izumori K (2004a) Cloning, nucleotide sequence, and overexpression of the l-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl Environ Microbiol 70:3298–3304

    Article  CAS  Google Scholar 

  • Leang K, Takada G, Fukai Y, Morimoto K, Granstrom TB, Izumori K (2004b) Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose isomerase via substrate specificity. Biochim Biophys Acta 1674:68–77

    CAS  Google Scholar 

  • Levin GV, Zehner LR, Sanders JP, Beadle JR (1964) Sugar substitues: their energy values, bulk characteristic, and potential health benefits. Am J Clin Nutr 62:1161–1168

    Google Scholar 

  • Livesey G, Brown JC (1995) Whole body metabolism is not restricted to d-sugars because energy metabolism of l-sugars fits a computational model in rats. J Nutr 125:3020–3029

    CAS  Google Scholar 

  • Moralejo P, Egan SM, Hidalgo E, Aguilar J (1993) Sequencing and characterization of a gene cluster encoding the enzymes for l-rhamnose metabolism in Escherichia coli. J Bacteriol 175:5585–5594

    CAS  Google Scholar 

  • Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11:88–95

    Google Scholar 

  • Musafia B, Buchner V, Arad D (1995) Complex salt bridges in proteins: statistical analysis of structure and function. J Mol Biol 254:761–770

    Article  CAS  Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–739

    Article  CAS  Google Scholar 

  • Poonperm W, Takata G, Okada H, Morimoto K, Granstrom TB, Izumori K (2007) Cloning, sequencing, overexpression and characterization of l-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Appl Microbiol Biotechnol 76:1297–1307

    Article  CAS  Google Scholar 

  • Power J (1967) The l-rhamnose genetic system in Escherichia coli K-12. Genetics 55:557–568

    CAS  Google Scholar 

  • Richardson JS, Hynes MF, Oresnik IJ (2004) A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacteriol 186:8433–8442

    Article  CAS  Google Scholar 

  • Richardson JS, Carpena X, Switala J, Perez-Luque R, Donald LJ, Loewen PC, Oresnik IJ (2008) RhaU of Rhizobium leguminosarum is a rhamnose mutarotase. J Bacteriol 190:2903–2910

    Article  CAS  Google Scholar 

  • Ryu KS, Kim JI, Cho SJ, Park D, Park C, Cheong HK, Lee JO, Choi BS (2005) Structural insights into the monosaccharide specificity of Escherichia coli rhamnose mutarotase. J Mol Biol 349:153–162

    Article  CAS  Google Scholar 

  • Spek EJ, Bui AH, Lu M, Kallenbach NR (1998) Surface salt bridges stabilize the GCN4 leucine zipper. Protein Sci 7:2431–2437

    Article  CAS  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    Article  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  CAS  Google Scholar 

  • Tomazic SJ, Klibanov AM (1988) Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J Biol Chem 263:3086–3091

    CAS  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DS13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    Article  CAS  Google Scholar 

  • Vieille C, Epting KL, Kelly RM, Zeikus JG (2001) Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur J Biochem 268:6291–6301

    Article  CAS  Google Scholar 

  • Wasserman B (1984) Thermostable enzyme production. Food Technol 38:78–88

    Google Scholar 

  • Whitlow M, Howard AJ, Finzel BC, Poulos TL, Winborne E, Gilliland GL (1991) A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and d-xylose. Proteins 9:153–173

    Article  CAS  Google Scholar 

  • Xiao L, Honig B (1999) Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 289:1435–1444

    Article  CAS  Google Scholar 

  • Yip KS, Britton KL, Stillman TJ, Lebbink J, de Vos WM, Robb FT, Vetriani C, Maeder D, Rice DW (1998) Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur J Biochem 255:336–346

    Article  CAS  Google Scholar 

  • Yoshida H, Yamada M, Ohyama Y, Takada G, Izumori K, Kamitori S (2007) The structures of l-rhamnose isomerase from Pseudomonas stutzeri in complexes with l-rhamnose and d-allose provide insights into broad substrate specificity. J Mol Biol 365:1505–1516

    Article  CAS  Google Scholar 

  • You DJ, Fukuchi S, Nishikawa K, Koga Y, Takano K, Kanaya S (2007) Protein thermostabilization requires a fine-tuned placement of surface-charged residues. J Biochem 142:507–516

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0070463). This study was also supported by a grant (2008A0080126) from ARPC, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Woo Kang or Jung-Kul Lee.

Additional information

Ponnandy Prabhu and Thanh Thi Ngoc Doan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Salt bridge forming residues in the α-helix of BHRI, ECRI, and YPRI (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhu, P., Doan, T.T.N., Jeya, M. et al. Cloning and characterization of a rhamnose isomerase from Bacillus halodurans . Appl Microbiol Biotechnol 89, 635–644 (2011). https://doi.org/10.1007/s00253-010-2844-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2844-4

Keywords

Navigation