Skip to main content
Log in

Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli cells, expressing 4-hydroxyphenylacetate 3-hydroxylase, fully transformed 4-halogenated phenols to their equivalent catechols as single products in shaken flasks. 4-Fluorophenol was transformed at a rate 1.6, 1.8, and 3.4-fold higher than the biotransformation of 4-chloro-, 4-bromo-, and 4-iodo-phenol, respectively. A scale-up from shaken flask to a 5 L stirred tank bioreactor was undertaken to develop a bioprocess for the production of 4-substituted halocatechols at higher concentrations and scale. In a stirred tank reactor, the optimized conditions for induction of 4-HPA hydroxylase expression were at 37 °C for 3 h. The rate of biotransformation of 4-fluorophenol to 4-fluorocatechol by stirred tank bioreactor grown cells was the same at 1 and 4.8 mM (5.13 μmol/min/g CDW) once the ratio of biocatalyst (E. coli CDW) to substrate concentration (mM) was maintained at 2:1. At 10.8 mM 4-fluorophenol, the rate of 4-fluorocatechol formation decreased by 4.7-fold. However, the complete transformation of 1.3 g of 4-fluorophenol (10.8 mM) to 4-fluorocatechol was achieved within 7 h in a 1 L reaction volume. Similar to 4-fluorophenol, other 4-substituted halophenols were completely transformed to 4-halocatechols at 2 mM within a 1–2 h period. An increase in 4-halophenol concentration to 4.8 mM resulted in a 2.5–20-fold decrease in biotransformation efficiency depending on the substrate tested. Organic solvent extraction of the 4-halocatechol products followed by column chromatography resulted in the production of purified products with a final yield of between 33% and 38%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achkar J, Ferrandez A (2008) Fermentative production hydroxytyrosol using genetically engineered Escherichia coli. WO 2008/064839 A2 (DSM IP Assets B.V., Neth.), 42 pp

  • Alig L, Alsenz J, Andjelkovic M, Bendels S, Benardeau A, Bleicher K, Bourson A, David-Pierson P, Guba W, Hildbrand S, Kube D, Luebbers T, Mayweg AV, Narquizian R, Neidhart W, Nettekoven M, Plancher J-M, Rocha C, Rogers-Evans M, Roever S, Schneider G, Taylor S, Waldmeier P (2008) Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity. J Med Chem 51:2115–2127

    Article  CAS  Google Scholar 

  • Allouche N, Damak M, Ellouz R, Sayadi S (2004) Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol 70:2105–2109

    Article  CAS  Google Scholar 

  • Boshoff A, Burton MH, Burton SG (2003) Optimization of catechol production by membrane-immobilized polyphenol oxidase: a modeling approach. Biotechnol Bioeng 83:1–7

    Article  CAS  Google Scholar 

  • Brooks SJ, Doyle EM, Hewage C, Malthouse JPG, Duetz W, O’Connor KE (2004) Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Appl Microbiol Biotechnol 64:486–492

    Article  CAS  Google Scholar 

  • Bui VP, Hudlicky T, Hansen TV, Stenstrom Y (2002) Direct biooxidation of arenes to corresponding catechols with E. coli JM109 (pDTG602). Application to synthesis of combretastatins A-1 and B-1. Tetrahedron Lett 43:2839–2841

    Article  CAS  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14

    Article  CAS  Google Scholar 

  • Dixon S, Brown RCD, Gale PA (2007) A biaryl cross-coupling strategy for functionalization of benzocrown ethers. Chem Commun 34:3565–3567

    Article  Google Scholar 

  • Espin JC, Soler-Rivas C, Cantos E, Tomas-Barberan FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49:1187–1193

    Article  CAS  Google Scholar 

  • Fiege H, Voges H-W, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch H-J, Garbe D, Paulus W (2002) Phenol Derivatives. In: Wiley-VCH (ed) Ullmann’s Encyclopedia of Industrial Chemistry, vol 25. p 605

  • Hansen TV, Skattebol L (2005) One-pot synthesis of substituted catechols from the corresponding phenols. Tetrahedron Lett 46:3357–3358

    Article  CAS  Google Scholar 

  • Heinrich MR, Steglich W, Banwell MG, Kashman Y (2003) Total synthesis of the marine alkaloid halitulin. Tetrahedron 59:9239–9247

    Article  CAS  Google Scholar 

  • Held M, Suske W, Schmid A, Engesser K-H, Kohler H-PE, Witholt B, Wubbolts MG (1998) Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP 1. J Mol Catal B: Enzym 5:87–93

    Article  CAS  Google Scholar 

  • Held M, Schmid A, Kohler H-P, Suske W, Witholt B, Wubbolts MG (1999) An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst. Biotechnol Bioeng 62:641–648

    Article  CAS  Google Scholar 

  • Hille UE, Hu Q, Vock C, Negri M, Bartels M, Mueller-Vieira U, Lauterbach T, Hartmann RW (2009) Novel CYP17 inhibitors: Synthesis, biological evaluation, structure-activity relationships and modeling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls. Eur J Med Chem 44:2765–2775

    Article  CAS  Google Scholar 

  • Lee EY, Shuler ML (2007) Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnol Bioeng 98:318–327

    Article  CAS  Google Scholar 

  • Lee J-Y, Xun L (1998) Novel biological process of l-DOPA production from l-tyrosine by p-hydroxyphenylacetate 3-hydroxylase. Biotechnol Lett 20:479–482

    Article  CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations, 2nd completely revised and extended edition. Wiley-VCH GmbH &Co. KGaA, Weinheim

    Google Scholar 

  • Lisdat F, Wollenberger U (1998) Trienzyme amplification system for the detection of catechol and catecholamines using internal co-substrate regeneration. Anal Lett 31:1275–1285

    CAS  Google Scholar 

  • Lynch RM, Woodley JM, Lilly MD (1997) Process design for the oxidation of fluorobenzene to fluorocatechol by Pseudomonas putida. J Biotechnol 58:167–175

    Article  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  Google Scholar 

  • Marin-Zamora ME, Rojas-Melgarejo F, Garcia-Canovas F, Garcia-Ruiz PA (2009) Production of o-diphenols by immobilized mushroom tyrosinase. J Biotechnol 139:163–168

    Article  CAS  Google Scholar 

  • Mason JR (1988) Oxygenase catalyzed hydroxylation of aromatic compounds: simple chemistry by complex enzymes. Int Ind Biotechnol 8:19–24

    CAS  Google Scholar 

  • McClay K, Fox BG, Steffan RJ (2000) Toluene monooxygenase-catalyzed epoxidation of alkenes. Appl Environ Microbiol 66:1877–1882

    Article  CAS  Google Scholar 

  • Meyer A, Held M, Schmid A, Kohler H-PE, Witholt B (2003) Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnol Bioeng 81:518-524

    Google Scholar 

  • Nolan LC, O’Connor KE (2007) Use of Pseudomonas mendocina, or recombinant Escherichia coli cells expressing toluene-4-monooxygenase, and a cell-free tyrosinase for the synthesis of 4-fluorocatechol from fluorobenzene. Biotechnol Lett 29:1045–1050

    Article  CAS  Google Scholar 

  • Paulini R, Lerner C, Diederich F, Jakob-Roetne R, Zurcher G, Borroni E (2006) Synthesis and biological evaluation of potent bisubstrate inhibitors of the enzyme catechol O-methyltransferase (COMT) lacking a nitro group. Helv Chim Acta 89:1856–1887

    Article  CAS  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  CAS  Google Scholar 

  • Prieto MA, Garcia JL (1994) Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem 269:22823–22829

    CAS  Google Scholar 

  • Prieto MA, Perez-Aranda A, Garcia JL (1993) Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range. J Bacteriol 175:2161–2167

    Google Scholar 

  • Prieto MA, Diaz E, Garcia JL (1996) Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol 178:111–120

    Article  CAS  Google Scholar 

  • Quideau S, Lebon M, Lamidey A-M (2002) Enantiospecific synthesis of the antituberculosis marine sponge metabolite (+)−puupehenone. The arenol oxidative activation route. Org Lett 4:3975–3978

    Article  CAS  Google Scholar 

  • Ridder L, Briganti F, Boersma MG, Boeren S, Vis EH, Scozzafava A, Veeger C, Rietjens IMCM (1998) Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1, 2-dioxygenase from Pseudomonas putida (arvilla) C1. Eur J Biochem 257:92–100

    Article  CAS  Google Scholar 

  • Rodriguez MJ, Lebrero JLA, Alvarez E (1999) Biotransformation of phenol to catechol by recombinant phenol hydroxylase. Biocatal Biotransform 17:45–60

    Article  CAS  Google Scholar 

  • Salvo JJ, Mobley DP, Brown DW, Caruso LA, Yake AP, Spivack JL, Dietrich DK (1990) Biosynthesis of p-hydroxylated aromatics. Biotechnol Prog 6:193–197

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature (London) 409:258–268

    Article  CAS  Google Scholar 

  • Selinheimo E, Gasparetti C, Mattinen M-L, Steffensen CL, Buchert J, Kruus K (2009) Comparison of substrate specificity of tyrosinases from Trichoderma reesei and Agaricus bisporus. Enzyme Microb Technol 44:1–10

    Article  CAS  Google Scholar 

  • Seo S-Y, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    Article  CAS  Google Scholar 

  • Shadnia H, Wright JS (2008) Understanding the toxicity of phenols: using quantitative structure–activity relationship and enthalpy changes to discriminate between possible mechanisms. Chem Res Toxicol 21:1197–1204

    Article  CAS  Google Scholar 

  • Sonda S, Katayama K, Fujio M, Sakashita H, Inaba K, Asano K, Akira T (2007) 1, 5-Benzodioxepin derivatives as a novel class of muscarinic M3 receptor antagonists. Bioorg Med Chem Lett 17:925–931

    Article  CAS  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  Google Scholar 

  • Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HP (1997) Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. J Biol Chem 272:24257–24265

    Article  CAS  Google Scholar 

  • Tao Y, Fishman A, Bentley WE, Wood TK (2004) Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. J Bacteriol 186:4705–4713

    Article  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  Google Scholar 

  • Xie Q, Wu J, Xu G, Yang L (2006) Asymmetric reduction of o-chloroacetophenone with Candida pseudotropicalis 104. Biotechnol Prog 22:1301–1304

    Article  CAS  Google Scholar 

  • Yamaguchi S, Tsuchida N, Miyazawa M, Hirai Y (2005) Synthesis of two naturally occurring 3-methyl-2, 5-dihydro-1-benzoxepin carboxylic acids. J Org Chem 70:7505–7511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lydie Coulombel was supported by Enterprise Ireland (PC/2008/131). Jasmina Nikodinovic was supported by the Environmental Protection Agency (2008-ET-LS-1-S2). Louise Nolan was supported by Science Foundation Ireland (04/IN3/B581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. O’Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulombel, L., Nolan, L.C., Nikodinovic, J. et al. Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase. Appl Microbiol Biotechnol 89, 1867–1875 (2011). https://doi.org/10.1007/s00253-010-2969-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2969-5

Keywords

Navigation