Skip to main content
Log in

Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated the expression of (R)-specific enoyl coenzyme A hydratase (PhaJ) in Pseudomonas putida KT2440 accumulating polyhydroxyalkanoate (PHA) from sodium octanoate in order to identify biosynthesis pathways of PHAs from fatty acids in pseudomonads. From a database search through the P. putida KT2440 genome, an additional phaJ gene homologous to phaJ4 Pa from Pseudomonas aeruginosa, termed phaJ4 Pp, was identified. The gene products of phaJ1 Pp, which was identified previously, and phaJ4 Pp were confirmed to be functional in recombinant Escherichia coli on PHA synthesis from sodium dodecanoate. Cytosolic proteins from P. putida grown on sodium octanoate were subjected to anion exchange chromatography and one of the eluted fractions with hydratase activity included PhaJ4Pp, as revealed by western blot analysis. These results strongly suggest that PhaJ4Pp forms a channeling route from β-oxidation to PHA biosynthesis in P. putida. Moreover, the substrate specificity of PhaJ1Pp was suggested to be different from that of PhaJ1Pa from P. aeruginosa although these two proteins share 67% amino acid sequence identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Davis R, Chandrashekar A, Shamala TR (2008) Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp in the production of polyhydroxyalkanoates. Antonie Leeuwenhoek 93:285–296

    Article  CAS  Google Scholar 

  • Fiedler S, Steinbüchel A, Rehm BHA (2002) The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160

    Article  CAS  Google Scholar 

  • Fong JC, Schulz H (1981) Short-chain and long-chain enoyl-CoA hydratase from pig heart muscle. Methods Enzymol 70:390–398

    Article  Google Scholar 

  • Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830

    Article  CAS  Google Scholar 

  • Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673

    Article  CAS  Google Scholar 

  • Fukui T, Yokomizo S, Kobayashi G, Doi Y (1999) Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonoas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol Lett 170:69–75

    Article  CAS  Google Scholar 

  • Huijberts GNM, de Rijk TC, de Warrd P, Eggink G (1994) 13C Nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666

    Article  CAS  Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxy-alkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954

    Article  CAS  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    CAS  PubMed  Google Scholar 

  • Jenkins LS, Nunn WD (1987a) Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J Bacteriol 169:42–52

    Article  CAS  Google Scholar 

  • Jenkins LS, Nunn WD (1987b) Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102

    Article  CAS  Google Scholar 

  • Kato M, Bao HJ, Kang CK, Fukui T, Doi Y (1996) Production of a novel copolymer of 3-hydroxybutyric acids and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1991) Preparation and characterization of poly(β-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 24:5256–5260

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857

    Article  CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    Article  CAS  Google Scholar 

  • Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J Bacteriol 180:6459–6467

    Article  CAS  Google Scholar 

  • Moskowitz GJ, Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate. II. Enzymatic synthesis of D-(−)-β-hydroxybutyryl coenzyme A by an enoyl hydratase from Rhodospirillum rubrum. Biochemistry 8:2748–2755

    Article  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  Google Scholar 

  • Park SJ, Lee SY (2003) Identification and characterization of a new enoyl coenzyme a hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397

    Article  CAS  Google Scholar 

  • Park SJ, Ahn WS, Green PR, Lee SY (2001) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biomacromolecules 2:248–254

    Article  CAS  Google Scholar 

  • Rehm BHA, Krüger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis—the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem 273:24044–24051

    Article  CAS  Google Scholar 

  • Reiser SE, Mitsky TA, Gruys KJ (2000) Characterization and cloning of an (R)-specific trans-2, 3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli. Appl Microbiol Biotechnol 53:209–218

    Article  CAS  Google Scholar 

  • Ren Q, Sierro N, Witholt B, Kessler B (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182:2978–2981

    Article  CAS  Google Scholar 

  • Rhie HG, Dennis D (1995) Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha +Escherichia coli. Appl Environ Microbiol 61:2487–2492

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sato S, Nomura CT, Abe H, Doi Y, Tsuge T (2007) Poly[(R)-3-hydroxybutyrate] formation in Escherichia coli from glucose through an enoyl-CoA hydratase-mediated pathway. J Biosci Bioeng 103:38–44

    Article  CAS  Google Scholar 

  • Snell KD, Feng F, Zhong L, Martin D, Madison LL (2002) YfcX enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 184:5696–5705

    Article  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoate: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Coexpression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol Lett 176:183–190

    Article  CAS  Google Scholar 

  • Thomson N, Summers D, Sivaniah E (2010) Synthesis, properties and uses of bacterial storage lipid granules as naturally occurring nanoparticles. Soft Matter 6:4045–4057

    Article  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30

    Article  CAS  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198

    Article  CAS  Google Scholar 

  • Tsuge T, Taguchi K, Taguchi S, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid β-oxidation. Int J Biol Macromol 31:195–205

    Article  CAS  Google Scholar 

  • Valentin HE, Steinbüchel A (1994) Application of enzymatically synthesized short-chain-length hydroxyl fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl Microbiol Biotechnol 40:699–709

    Article  CAS  Google Scholar 

  • Vo MT, Lee KW, Jung YM, Lee YH (2008) Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KTCT1639. J Biosci Bioeng 106:95–98

    Article  CAS  Google Scholar 

  • Wang Q, Nomura CT (2010) Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J Biosci Bioeng 110:653–659

    Article  CAS  Google Scholar 

  • Witholt B, Kessler B (1999) Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicholas Thomson (University of Cambridge) for English corrections of our manuscript. This work was supported by the Grant-in aid for Industrial Technology Research Grant Program in 2005 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. S.S. was a recipient of a JSPS young scientist fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, S., Kanazawa, H. & Tsuge, T. Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida . Appl Microbiol Biotechnol 90, 951–959 (2011). https://doi.org/10.1007/s00253-011-3150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3150-5

Keywords

Navigation