Skip to main content
Log in

In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In silico metabolic network models are valuable tools for strain improvement with desired properties. In this work, based on the comparisons of each pathway flux under two different objective functions for the reconstructed metabolic network of Streptomyces roseosporus, three potential targets of zwf2 (code for glucose-6-phosphate hydrogenase), dptI (code for α-ketoglutarate methyltransferase), and dptJ (code for tryptophan oxygenase) were identified and selected for the genetic modifications. Overexpression of zwf2, dptI, and dptJ genes increased the daptomycin concentration up to 473.2, 452.5, and 489.1 mg/L, respectively. Furthermore, co-overexpression of three genes in series resulted in a 34.4% higher daptomycin concentration compared with the parental strain, which ascribed to the synergistic effect of the enzymes responsible for daptomycin biosynthesis. Finally, the engineered strain enhanced the yield of daptomycin up to 581.5 mg/L in the fed-batch culture, which was approximately 43.2% higher than that of the parental strain. These results demonstrated that the metabolic network based on in silico prediction would be accurate, reasonable, and practical for target gene identification and strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  Google Scholar 

  • Bai DM, Zhao XM, Li XG, Xu SM (2004) Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem Eng J 18:41–48

    Article  CAS  Google Scholar 

  • Baltz RH, Miao V, Wrigley SK (2005) Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22:717–741

    Article  CAS  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829

    Article  CAS  Google Scholar 

  • Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem 283:25186–25199

    Article  CAS  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  CAS  Google Scholar 

  • Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 68:4731–4739

    Article  CAS  Google Scholar 

  • Celik E, Calik P, Oliver SG (2010) Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105:317–329

    Article  CAS  Google Scholar 

  • Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using 13C-labeled glucose. Biotechnol Bioeng 68:652–659

    Article  CAS  Google Scholar 

  • Christensen B, Thykaer J, Nielsen J (2000) Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum. Appl Microbiol Biotechnol 54:212–217

    Article  CAS  Google Scholar 

  • Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 85:1907–1914

    Article  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  Google Scholar 

  • Fowler ZL, Gikandi WW, Koffas MA (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839

    Article  CAS  Google Scholar 

  • Führer L, Kubicek CP, Röhr M (1980) Pyridine nucleotide levels and ratios in Aspergillus niger. Can J Microbiol 26:405–408

    Article  Google Scholar 

  • Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  Google Scholar 

  • Huber FM, Pieper RL, Tietz AJ (1988) The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C. J Biotechnol 7:283–292

    Article  CAS  Google Scholar 

  • Ishimura Y, Nozaki M, Hayaishi O (1970) The oxygenated form of L-tryptophan 2, 3-dioxygenase as reaction intermediate. J Biol Chem 245:3593–3602

    CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kim HB, Smith CP, Micklefield J, Mavituna F (2004) Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab Eng 6:313–325

    Article  CAS  Google Scholar 

  • Kim SH, Lee HN, Kim HJ, Kim ES (2011) Transcriptome analysis of an antibiotic downregulator mutant and synergistic Actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor. Appl Environ Microbiol 77:1872–1877

    Article  CAS  Google Scholar 

  • Lessie TG, Vander Wyk JC (1972) Multiple forms of Pseudomomas multivorans glucose-6-phosphate and 6-phosphogluconate dehydrogenases: differences in size, pyridine nucleotide specificity and susceptibility to inhibition by adenosine 5′-triphosphate. J Bacteriol 110:1107–1117

    CAS  Google Scholar 

  • Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8:240–252

    Article  CAS  Google Scholar 

  • Liu T, You D, Valenzano C, Sun Y, Li J, Yu Q, Zhou X, Cane DE, Deng Z (2006) Identification of NanE as the thioesterase for polyether chain release in nanchangmycin biosynthesis. Chem Biol 13:945–955

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  Google Scholar 

  • Mahlert C, Kopp F, Thirlway J, Micklefield J, Marahiel MA (2007) Stereospecific enzymatic transformation of α-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis. J Am Chem Soc 129:12011–12018

    Article  CAS  Google Scholar 

  • Mathai D, Biedenbach DJ, Jones RN, Bell JM, Turnidge J, Sader HS (2009) Activity of daptomycin against Gram-positive bacterial isolates from Indian medical centres. Int J Antimicrob Agents 34:497–499

    Article  CAS  Google Scholar 

  • Miao V, Coëffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr I, Bouchard M, Silva CJ, Wrigley SK, Baltz RH (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523

    Article  CAS  Google Scholar 

  • Nailor MD, Sobel JD (2009) Antibiotics for gram-positive bacterial infections: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, dalbavancin, and telavancin. Infect Dis Clin North Am 23:965–982

    Article  Google Scholar 

  • Nguyen KT, Kau D, Gu JQ, Brian P, Wrigley SK, Baltz RH, Miao V (2006) A glutamic acid 3-methyltransferase encoded by an accessory gene locus important for daptomycin biosynthesis in Streptomyces roseosporus. Mol Microbiol 61:1294–1307

    Article  CAS  Google Scholar 

  • Obanye AIC, Hobbs G, Gardner DCJ, Oliver SG (1996) Correlation between carbon flux through the pentose phosphate pathway and production of the antibiotic methylenomycin in Streptomyces coelicolor A3(2). Microbiology 142:133–137

    Article  CAS  Google Scholar 

  • Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185:601–609

    Article  CAS  Google Scholar 

  • Paradkar AS, Mosher RH, Anders C, Griffin A, Griffin J, Hughes C, Greaves P, Barton B, Jensen SE (2001) Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl Environ Microbiol 67:2292–2297

    Article  CAS  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104:7797–7802

    Article  CAS  Google Scholar 

  • Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K-12 based on protein expression by 2D electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178

    CAS  Google Scholar 

  • Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6:300–312

    Article  CAS  Google Scholar 

  • Rhee KH, Davies J (2006) Transcription analysis of daptomycin biosynthetic genes in Streptomyces roseosporus. J Microbiol Biotechnol 16:1841–1848

    CAS  Google Scholar 

  • Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72:7132–7139

    Article  CAS  Google Scholar 

  • Salas JA, Quiros LM, Hardisson C (1984) Pathways of glucose catabolism during germination of Streptomyces spores. FEMS Microbiol Lett 22:229–233

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11:243–252

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies, 1st edn. Academic, San Diego

    Google Scholar 

  • Sun Y, He X, Liang J, Zhou X, Deng Z (2009) Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82:303–310

    Article  CAS  Google Scholar 

  • Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69:6412–6417

    Article  CAS  Google Scholar 

  • Taymaz-Nikerel H, Borujeni AE, Verheijen PJ, Heijnen JJ, van Gulik WM (2010) Genome-derived minimal metabolic models for Escherichia coil MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng 107:369–381

    Article  CAS  Google Scholar 

  • Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E (2010) Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 12:455–461

    Article  CAS  Google Scholar 

  • Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617

    Article  CAS  Google Scholar 

  • Wittmann M, Linne U, Pohlmann V, Marahiel MA (2008) Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS J 275:5343–5354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National 973 Project of China (No. 2011CB710800), the Key Program of National Natural Science Foundation of China (Grant No. 20936002), National Natural Science Foundation of China (No. 21076022), and the Programme of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D., Wen, J., Wang, G. et al. In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 94, 637–649 (2012). https://doi.org/10.1007/s00253-011-3773-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3773-6

Keywords

Navigation